• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fast sampling from beta-ensembles
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique
DOI :
10.1007/s11222-020-09984-0
Title :
Fast sampling from beta-ensembles
Author(s) :
Gautier, Guillaume [Auteur]
Scool [Scool]
Bardenet, Remi [Auteur] refId
Scool [Scool]
Valko, Michal [Auteur] refId
DeepMind [Paris]
Journal title :
Statistics and Computing
Publisher :
Springer Verlag (Germany)
Publication date :
2021-01-12
ISSN :
0960-3174
English keyword(s) :
β-ensembles
Tridiagonal random matrices
Orthogonal polynomials
Gibbs sampling
HAL domain(s) :
Mathématiques [math]/Statistiques [math.ST]
English abstract : [en]
We study sampling algorithms for $\beta$-ensembles with time complexity less than cubic in the cardinality of the ensemble. Following Dumitriu & Edelman (2002), we see the ensemble as the eigenvalues of a random tridiagonal ...
Show more >
We study sampling algorithms for $\beta$-ensembles with time complexity less than cubic in the cardinality of the ensemble. Following Dumitriu & Edelman (2002), we see the ensemble as the eigenvalues of a random tridiagonal matrix, namely a random Jacobi matrix. First, we provide a unifying and elementary treatment of the tridiagonal models associated to the three classical Hermite, Laguerre and Jacobi ensembles. For this purpose, we use simple changes of variables between successive reparametrizations of the coefficients defining the tridiagonal matrix. Second, we derive an approximate sampler for the simulation of $\beta$-ensembles, and illustrate how fast it can be for polynomial potentials. This method combines a Gibbs sampler on Jacobi matrices and the diagonalization of these matrices. In practice, even for large ensembles, only a few Gibbs passes suffice for the marginal distribution of the eigenvalues to fit the expected theoretical distribution. When the conditionals in the Gibbs sampler can be simulated exactly, the same fast empirical convergence is observed for the fluctuations of the largest eigenvalue. Our experimental results support a conjecture by Krishnapur et al. (2016), that the Gibbs chain on Jacobi matrices of size $N$ mixes in $\mathcal{O}(\log(N))$.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
Inférence bayésienne à ressources limitées - données massives et modèles coûteux
Comment :
37 pages, 8 figures, code at https://github.com/guilgautier/DPPy
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • http://arxiv.org/pdf/2003.02344
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017