• English
    • français
  • Aide
  •  | 
  • Contact
  •  | 
  • À Propos
  •  | 
  • Ouvrir une session
  • Portail HAL
  •  | 
  • Pages Pro Chercheurs
  • EN
  •  / 
  • FR
Voir le document 
  •   Accueil de LillOA
  • Liste des unités
  • METRICS : Evaluation des technologies de santé et des pratiques médicales - ULR 2694
  • Voir le document
  •   Accueil de LillOA
  • Liste des unités
  • METRICS : Evaluation des technologies de santé et des pratiques médicales - ULR 2694
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

High-dimensional test for normality
  • BibTeX
  • CSV
  • Excel
  • RIS

Type de document :
Communication dans un congrès avec actes
URL permanente :
http://hdl.handle.net/20.500.12210/29248
Titre :
High-dimensional test for normality
Auteur(s) :
Kellner, Jérémie [Auteur]
Celisse, Alain [Auteur] refId
Titre de la manifestation scientifique :
Journées des Statistiques
Ville :
Rennes
Pays :
France
Date de début de la manifestation scientifique :
2014-06-02
Date de publication :
2014-06-02
Discipline(s) HAL :
Mathématiques [math]/Statistiques [math.ST]
Résumé en anglais : [en]
A new goodness-of-fit test for normality in high-dimension (and Reproducing Kernel Hilbert Space) is proposed. It shares common ideas with the Maximum Mean Discrepancy (MMD) it outperforms both in terms of computation time ...
Lire la suite >
A new goodness-of-fit test for normality in high-dimension (and Reproducing Kernel Hilbert Space) is proposed. It shares common ideas with the Maximum Mean Discrepancy (MMD) it outperforms both in terms of computation time and applicability to a wider range of data. Theoretical results are derived for the Type-I and Type-II errors. They guarantee the control of Type-I error at prescribed level and an exponentially fast decrease of the Type-II error. Synthetic and real data also illustrate the practical improvement allowed by our test compared with other leading approaches in high-dimensional settings.Lire moins >
Langue :
Anglais
Audience :
Nationale
Vulgarisation :
Non
Établissement(s) :
CNRS
Université de Lille
Collections :
  • METRICS : Evaluation des technologies de santé et des pratiques médicales - ULR 2694
Date de dépôt :
2020-06-08T14:10:37Z
Université de Lille

Mentions légales
Université de Lille © 2017