Dictionary-based tensor-train sparse coding
Document type :
Communication dans un congrès avec actes
Title :
Dictionary-based tensor-train sparse coding
Author(s) :
Boudehane, Abdelhak [Auteur]
Laboratoire des signaux et systèmes [L2S]
Zniyed, Yassine [Auteur]
Centre de Recherche en Automatique de Nancy [CRAN]
Tenenhaus, Arthur [Auteur]
Laboratoire des signaux et systèmes [L2S]
Le Brusquet, Laurent [Auteur]
Laboratoire des signaux et systèmes [L2S]
Boyer, Remy [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Laboratoire des signaux et systèmes [L2S]
Zniyed, Yassine [Auteur]
Centre de Recherche en Automatique de Nancy [CRAN]
Tenenhaus, Arthur [Auteur]
Laboratoire des signaux et systèmes [L2S]
Le Brusquet, Laurent [Auteur]
Laboratoire des signaux et systèmes [L2S]
Boyer, Remy [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Conference title :
28th European Signal Processing Conference (EUSIPCO 2020)
City :
Amsterdam
Country :
Pays-Bas
Start date of the conference :
2021-01-18
English keyword(s) :
Sparse coding
High-order tensors
Tensor train
Constrained tensor decomposition
Fast algorithms
High-order tensors
Tensor train
Constrained tensor decomposition
Fast algorithms
HAL domain(s) :
Mathématiques [math]
Sciences de l'ingénieur [physics]/Traitement du signal et de l'image [eess.SP]
Sciences de l'ingénieur [physics]/Traitement du signal et de l'image [eess.SP]
English abstract : [en]
Multidimensional signal processing is receiving a lot of interest recently due to the wide spread appearance of multidimensional signals in different applications of data science. Many of these fields rely on prior knowledge ...
Show more >Multidimensional signal processing is receiving a lot of interest recently due to the wide spread appearance of multidimensional signals in different applications of data science. Many of these fields rely on prior knowledge of particular properties, such as sparsity for instance, in order to enhance the performance and the efficiency of the estimation algorithms. However, these multidimensional signals are, often, structured into high-order tensors, where the computational complexity and storage requirements become an issue for growing tensor orders. In this paper, we present a sparse-based Joint dImensionality Reduction And Factors rEtrieval (JIRAFE). More specifically, we assume that an arbitrary factor admits a decomposition into a redundant dictionary coded as a sparse matrix, called the sparse coding matrix. The goal is to estimate the sparse coding matrix in the Tensor-Train model framework.Show less >
Show more >Multidimensional signal processing is receiving a lot of interest recently due to the wide spread appearance of multidimensional signals in different applications of data science. Many of these fields rely on prior knowledge of particular properties, such as sparsity for instance, in order to enhance the performance and the efficiency of the estimation algorithms. However, these multidimensional signals are, often, structured into high-order tensors, where the computational complexity and storage requirements become an issue for growing tensor orders. In this paper, we present a sparse-based Joint dImensionality Reduction And Factors rEtrieval (JIRAFE). More specifically, we assume that an arbitrary factor admits a decomposition into a redundant dictionary coded as a sparse matrix, called the sparse coding matrix. The goal is to estimate the sparse coding matrix in the Tensor-Train model framework.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
Source :
Files
- https://hal.univ-lille.fr/hal-02865345/document
- Open access
- Access the document
- https://hal.univ-lille.fr/hal-02865345/document
- Open access
- Access the document
- https://hal.univ-lille.fr/hal-02865345/document
- Open access
- Access the document
- document
- Open access
- Access the document
- EUSIPCO.pdf
- Open access
- Access the document