• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Gamification of pure exploration for linear ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Communication dans un congrès avec actes
Title :
Gamification of pure exploration for linear bandits
Author(s) :
Degenne, Rémy [Auteur]
Statistical Machine Learning and Parsimony [SIERRA]
Ménard, Pierre [Auteur]
Scool [Scool]
Sequential Learning [SEQUEL]
Shang, Xuedong [Auteur]
Scool [Scool]
Sequential Learning [SEQUEL]
Valko, Michal [Auteur] refId
DeepMind [Paris]
Conference title :
International Conference on Machine Learning
City :
Vienna / Virtual
Country :
Autriche
Start date of the conference :
2020
HAL domain(s) :
Statistiques [stat]/Machine Learning [stat.ML]
English abstract : [en]
We investigate an active pure-exploration setting, that includes best-arm identification, in the context of linear stochastic bandits. While asymptotically optimal algorithms exist for standard multi-arm bandits, the ...
Show more >
We investigate an active pure-exploration setting, that includes best-arm identification, in the context of linear stochastic bandits. While asymptotically optimal algorithms exist for standard multi-arm bandits, the existence of such algorithms for the best-arm identification in linear bandits has been elusive despite several attempts to address it. First, we provide a thorough comparison and new insight over different notions of optimality in the linear case, including G-optimality, transductive optimality from optimal experimental designand asymptotic optimality. Second, we design the first asymptotically optimal algorithm for fixed-confidence pure exploration in linear bandits. As a consequence, our algorithm naturally bypasses the pitfall caused by a simple but difficult instance, that most prior algorithms had to be engineered to deal with explicitly. Finally, we avoid the need to fully solve an optimal design problem by providing an approach that entails an efficient implementation.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
Au delà de l'apprentissage séquentiel pour de meilleures prises de décisions
PaRis Artificial Intelligence Research InstitutE
Comment :
Virtual conference
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-02884330/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-02884330/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-02884330/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017