Tardi-magmatic precipitation of Martian ...
Document type :
Article dans une revue scientifique: Article original
DOI :
Permalink :
Title :
Tardi-magmatic precipitation of Martian Fe/Mg-rich clay minerals via igneous differentiation
Author(s) :
Viennet, J.-C. [Auteur]
Institut de minéralogie, de physique des matériaux et de cosmochimie [IMPMC]
Bernard, S. [Auteur]
Institut de minéralogie, de physique des matériaux et de cosmochimie [IMPMC]
Le Guillou, Corentin [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Sautter, V. [Auteur]
Institut de minéralogie, de physique des matériaux et de cosmochimie [IMPMC]
Schmitt-Kopplin, P. [Auteur]
Beyssac, O. [Auteur]
Institut de minéralogie, de physique des matériaux et de cosmochimie [IMPMC]
Pont, S. [Auteur]
Institut de minéralogie, de physique des matériaux et de cosmochimie [IMPMC]
Zanda, B. [Auteur]
Institut de minéralogie, de physique des matériaux et de cosmochimie [IMPMC]
Hewins, R. [Auteur]
Institut de minéralogie, de physique des matériaux et de cosmochimie [IMPMC]
Remusat, L. [Auteur]
Institut de minéralogie, de physique des matériaux et de cosmochimie [IMPMC]
Institut de minéralogie, de physique des matériaux et de cosmochimie [IMPMC]
Bernard, S. [Auteur]
Institut de minéralogie, de physique des matériaux et de cosmochimie [IMPMC]
Le Guillou, Corentin [Auteur]

Unité Matériaux et Transformations - UMR 8207 [UMET]
Sautter, V. [Auteur]
Institut de minéralogie, de physique des matériaux et de cosmochimie [IMPMC]
Schmitt-Kopplin, P. [Auteur]
Beyssac, O. [Auteur]
Institut de minéralogie, de physique des matériaux et de cosmochimie [IMPMC]
Pont, S. [Auteur]
Institut de minéralogie, de physique des matériaux et de cosmochimie [IMPMC]
Zanda, B. [Auteur]
Institut de minéralogie, de physique des matériaux et de cosmochimie [IMPMC]
Hewins, R. [Auteur]
Institut de minéralogie, de physique des matériaux et de cosmochimie [IMPMC]
Remusat, L. [Auteur]
Institut de minéralogie, de physique des matériaux et de cosmochimie [IMPMC]
Journal title :
Geochemical Perspectives Letters
Abbreviated title :
Geochem. Persp. Let.
Pages :
47-52
Publisher :
European Association of Geochemistry
Publication date :
2020-07
ISSN :
2410-3403
English keyword(s) :
Mars
magmatic precipitation
clay minerals
magmatic precipitation
clay minerals
HAL domain(s) :
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Chimie/Matériaux
Physique [physics]/Physique [physics]/Géophysique [physics.geo-ph]
Planète et Univers [physics]/Astrophysique [astro-ph]
Physique [physics]/Astrophysique [astro-ph]
Planète et Univers [physics]/Sciences de la Terre
Chimie/Matériaux
Physique [physics]/Physique [physics]/Géophysique [physics.geo-ph]
Planète et Univers [physics]/Astrophysique [astro-ph]
Physique [physics]/Astrophysique [astro-ph]
Planète et Univers [physics]/Sciences de la Terre
English abstract : [en]
Mars is seen as a basalt covered world that has been extensively altered through hydrothermal or near surface water-rock interactions. As a result, all the Fe/Mg-rich clay minerals detected from orbit so far have been ...
Show more >Mars is seen as a basalt covered world that has been extensively altered through hydrothermal or near surface water-rock interactions. As a result, all the Fe/Mg-rich clay minerals detected from orbit so far have been interpreted as secondary, i.e. as products of aqueous alteration of pre-existing silicates by (sub)surface water. Based on the fine scale petrographic study of the evolved mesostasis of the Nakhla meteorite, we report here the presence of primary Fe/Mg-rich clay minerals that directly precipitated from a water-rich fluid exsolved from the Cl-rich parental melt of nakhlites during igneous differentiation. Such a tardi-magmatic precipitation of clay minerals requires much lower amounts of water compared to production via aqueous alteration. Although primary Fe/Mg-rich clay minerals are minor phases in Nakhla, the contribution of such a process to Martian clay formation may have been quite significant during the Noachian given that Noachian magmas were richer in H2O. In any case, the present discovery justifies a re-evaluation of the exact origin of the clay minerals detected on Mars so far, with potential consequences for our vision of the early magmatic and climatic histories of Mars.Show less >
Show more >Mars is seen as a basalt covered world that has been extensively altered through hydrothermal or near surface water-rock interactions. As a result, all the Fe/Mg-rich clay minerals detected from orbit so far have been interpreted as secondary, i.e. as products of aqueous alteration of pre-existing silicates by (sub)surface water. Based on the fine scale petrographic study of the evolved mesostasis of the Nakhla meteorite, we report here the presence of primary Fe/Mg-rich clay minerals that directly precipitated from a water-rich fluid exsolved from the Cl-rich parental melt of nakhlites during igneous differentiation. Such a tardi-magmatic precipitation of clay minerals requires much lower amounts of water compared to production via aqueous alteration. Although primary Fe/Mg-rich clay minerals are minor phases in Nakhla, the contribution of such a process to Martian clay formation may have been quite significant during the Noachian given that Noachian magmas were richer in H2O. In any case, the present discovery justifies a re-evaluation of the exact origin of the clay minerals detected on Mars so far, with potential consequences for our vision of the early magmatic and climatic histories of Mars.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
CNRS
INRA
ENSCL
CNRS
INRA
ENSCL
Collections :
Research team(s) :
Matériaux Terrestres et Planétaires
Submission date :
2020-07-08T11:31:25Z
2020-07-18T13:15:36Z
2020-09-01T13:31:12Z
2020-07-18T13:15:36Z
2020-09-01T13:31:12Z
Files
- GPL2023_SI.pdf
- Version éditeur
- Open access
- Access the document
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States