Biomass higher heating value prediction ...
Type de document :
Article dans une revue scientifique: Article original
URL permanente :
Titre :
Biomass higher heating value prediction from ultimate analysis using multiple regression and genetic programming
Auteur(s) :
Boumanchar, Imane [Auteur]
Université Chouaib Doukkali [UCD]
Charafeddine, Kenza [Auteur]
Chhiti, Younes [Auteur]
Université Chouaib Doukkali [UCD]
M’hamdi Alaoui, Fatima Ezzahrae [Auteur]
Université Chouaib Doukkali [UCD]
Sahibed-dine, Abdelaziz [Auteur]
Université Chouaib Doukkali [UCD]
Bentiss, Fouad [Auteur]
Université Chouaib Doukkali [UCD]
Jama, charafeddine [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Bensitel, Mohammed [Auteur]
Université Chouaib Doukkali [UCD]
Université Chouaib Doukkali [UCD]
Charafeddine, Kenza [Auteur]
Chhiti, Younes [Auteur]
Université Chouaib Doukkali [UCD]
M’hamdi Alaoui, Fatima Ezzahrae [Auteur]
Université Chouaib Doukkali [UCD]
Sahibed-dine, Abdelaziz [Auteur]
Université Chouaib Doukkali [UCD]
Bentiss, Fouad [Auteur]
Université Chouaib Doukkali [UCD]
Jama, charafeddine [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Bensitel, Mohammed [Auteur]
Université Chouaib Doukkali [UCD]
Titre de la revue :
Biomass Conversion and Biorefinery
Nom court de la revue :
Biomass Conv. Bioref.
Numéro :
9
Pagination :
499-509
Éditeur :
Society for Mining, Metallurgy and Exploration Inc.
Date de publication :
2019-02-07
Discipline(s) HAL :
Chimie/Polymères
Chimie/Matériaux
Chimie/Matériaux
Résumé en anglais : [en]
The higher heating value (HHV) is a significant parameter for the determination of fuel quality. However, its measurement is time-consuming and requires sophisticated equipment. For this reason, several researches have ...
Lire la suite >The higher heating value (HHV) is a significant parameter for the determination of fuel quality. However, its measurement is time-consuming and requires sophisticated equipment. For this reason, several researches have been interested to develop mathematical models for the prediction of HHV from fundamental composition. The purpose of this study is to develop new correlations to determine the biomass HHV from ultimate analysis. As a result, two models were elaborated. The first was developed using multiple variable regression analysis while the second has adopted genetic programming formalism. Data of 171 from various types of biomass samples were randomly used for the development (75%) and the validation (25%) of new equations. The accuracy of the established models was compared to previous literature works in terms of correlation coefficient (CC), average absolute error (AAE), and average bias error (ABE). The proposed models were more performing with the highest CC and the smallest errors.Lire moins >
Lire la suite >The higher heating value (HHV) is a significant parameter for the determination of fuel quality. However, its measurement is time-consuming and requires sophisticated equipment. For this reason, several researches have been interested to develop mathematical models for the prediction of HHV from fundamental composition. The purpose of this study is to develop new correlations to determine the biomass HHV from ultimate analysis. As a result, two models were elaborated. The first was developed using multiple variable regression analysis while the second has adopted genetic programming formalism. Data of 171 from various types of biomass samples were randomly used for the development (75%) and the validation (25%) of new equations. The accuracy of the established models was compared to previous literature works in terms of correlation coefficient (CC), average absolute error (AAE), and average bias error (ABE). The proposed models were more performing with the highest CC and the smallest errors.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
CNRS
INRA
ENSCL
CNRS
INRA
ENSCL
Collections :
Équipe(s) de recherche :
Ingénierie des Systèmes Polymères
Date de dépôt :
2020-07-09T17:16:55Z
2020-08-27T09:32:19Z
2020-08-27T09:32:19Z