Phase-field calculations of sink strength ...
Type de document :
Article dans une revue scientifique: Article original
URL permanente :
Titre :
Phase-field calculations of sink strength in Al, Ni, and Fe: A detailed study of elastic effects
Auteur(s) :
Bouobda Moladje, Gabriel-Franck [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Thuinet, Ludovic [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Domain, Christophe [Auteur]
Matériaux et Mécanique des Composants [EDF R&D MMC]
Becquart, Charlotte [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Legris, Alexandre [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Thuinet, Ludovic [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Domain, Christophe [Auteur]
Matériaux et Mécanique des Composants [EDF R&D MMC]
Becquart, Charlotte [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Legris, Alexandre [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Titre de la revue :
Computational Materials Science
Pagination :
109905
Éditeur :
Elsevier BV
Date de publication :
2020-10
ISSN :
0927-0256
Discipline(s) HAL :
Chimie/Matériaux
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Résumé en anglais : [en]
The sink strength and bias of edge dislocations, low-angle symmetric tilt grain boundaries (STGBs), and spherical cavities are calculated for Al, Ni and Fe using a phase-field approach in this work. The interactions between ...
Lire la suite >The sink strength and bias of edge dislocations, low-angle symmetric tilt grain boundaries (STGBs), and spherical cavities are calculated for Al, Ni and Fe using a phase-field approach in this work. The interactions between point defects (PDs) and sinks are incorporated in the present model. These interactions include an elastic contribution to the total free energy of the system, and the phenomenon of elastodiffusion which is often ignored and consists in the modification of the PD migration energy due the strain field generated by the sink. Specific spatial schemes and new algorithms have been developed and applied to perform the calculations due to the PD diffusion which becomes anisotropic and spatial dependent when elastodiffusion is taken into account. The results obtained show that the solution of Rauh and Simon systematically underestimates the sink strength of edge dislocations, especially for dumbells in Ni and Fe. STGBs with low misorientation angle and high density are biased sinks when elasticity (with and without elastodiffusion) is taken into account. It is also shown that taking into account the PD anisotropy at saddle point when the elastodiffusion is considered leads to a significant bias (>10%) of the cavity, which thus highlights the importance of the PD anisotropy at saddle point on the sink strength and bias calculations.Lire moins >
Lire la suite >The sink strength and bias of edge dislocations, low-angle symmetric tilt grain boundaries (STGBs), and spherical cavities are calculated for Al, Ni and Fe using a phase-field approach in this work. The interactions between point defects (PDs) and sinks are incorporated in the present model. These interactions include an elastic contribution to the total free energy of the system, and the phenomenon of elastodiffusion which is often ignored and consists in the modification of the PD migration energy due the strain field generated by the sink. Specific spatial schemes and new algorithms have been developed and applied to perform the calculations due to the PD diffusion which becomes anisotropic and spatial dependent when elastodiffusion is taken into account. The results obtained show that the solution of Rauh and Simon systematically underestimates the sink strength of edge dislocations, especially for dumbells in Ni and Fe. STGBs with low misorientation angle and high density are biased sinks when elasticity (with and without elastodiffusion) is taken into account. It is also shown that taking into account the PD anisotropy at saddle point when the elastodiffusion is considered leads to a significant bias (>10%) of the cavity, which thus highlights the importance of the PD anisotropy at saddle point on the sink strength and bias calculations.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
CNRS
INRA
ENSCL
CNRS
INRA
ENSCL
Collections :
Équipe(s) de recherche :
Métallurgie Physique et Génie des Matériaux
Date de dépôt :
2020-07-15T09:07:09Z
2020-07-18T13:05:31Z
2020-07-18T13:19:26Z
2020-08-25T15:11:25Z
2020-07-18T13:05:31Z
2020-07-18T13:19:26Z
2020-08-25T15:11:25Z