3D printed sandwich materials filled with ...
Document type :
Article dans une revue scientifique: Article original
Permalink :
Title :
3D printed sandwich materials filled with hydrogels for extremely low heat release rate
Author(s) :
Geoffroy, Laura [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Davesne, Anne-Lise [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Bellayer, Séverine [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Blanchard, Florent [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Richard, Elodie [Auteur]
Institut Pasteur de Lille
Samyn, Fabienne [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Jimenez, Maude [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Bourbigot, Serge [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Davesne, Anne-Lise [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Bellayer, Séverine [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Blanchard, Florent [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Richard, Elodie [Auteur]
Institut Pasteur de Lille
Samyn, Fabienne [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Jimenez, Maude [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Bourbigot, Serge [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Journal title :
Polymer Degradation and Stability
Volume number :
179
Pages :
109269
Publisher :
Elsevier BV
Publication date :
2020-06-20
ISSN :
0141-3910
HAL domain(s) :
Chimie/Matériaux
Chimie/Polymères
Chimie/Polymères
English abstract : [en]
Additive manufacturing is a powerful tool to design materials with original properties. An innovative design of poly (Ethylene Vinyl Acetate) (EVA) containing 30 wt.-% of Aluminum TriHydroxide (ATH) was reported in a ...
Show more >Additive manufacturing is a powerful tool to design materials with original properties. An innovative design of poly (Ethylene Vinyl Acetate) (EVA) containing 30 wt.-% of Aluminum TriHydroxide (ATH) was reported in a previous paper and liquids (water or potassium carbonate aqueous solution) were incorporated in the 3D printed structure. These multi-materials showing interesting properties, but stability, control and processing of these liquid-containing systems were an issue due to porosity of the polymeric matrix. To overcome this issue, the use of hydrogels is considered in this study: being either solid or highly viscous, hydrogels can retain water in the design, despite the high porosity of the EVA/ATH matrix. In this paper, the liquid phase was substituted by flame retardant hydrogels (based on agar, alginate or poly (vinyl alcohol) - PVA), containing in particular vermiculite platelets and for the hydrogel based on alginate, K2CO3 as flame retardant fillers. Excellent behavior under a 50 kW/m2 heat flux during a cone calorimeter test was obtained, with fast extinguishment of the flame and a low peak of Heat Release Rate (pHRR) and Total Heat Release (THR). The physical barrier formed by vermiculite platelets during the test, as well as the condensed phase mechanism of K2CO3 were found to be responsible for these excellent results, as found by confocal microscopy observations, electron probe micro analysis and X-Ray diffraction experiments.Show less >
Show more >Additive manufacturing is a powerful tool to design materials with original properties. An innovative design of poly (Ethylene Vinyl Acetate) (EVA) containing 30 wt.-% of Aluminum TriHydroxide (ATH) was reported in a previous paper and liquids (water or potassium carbonate aqueous solution) were incorporated in the 3D printed structure. These multi-materials showing interesting properties, but stability, control and processing of these liquid-containing systems were an issue due to porosity of the polymeric matrix. To overcome this issue, the use of hydrogels is considered in this study: being either solid or highly viscous, hydrogels can retain water in the design, despite the high porosity of the EVA/ATH matrix. In this paper, the liquid phase was substituted by flame retardant hydrogels (based on agar, alginate or poly (vinyl alcohol) - PVA), containing in particular vermiculite platelets and for the hydrogel based on alginate, K2CO3 as flame retardant fillers. Excellent behavior under a 50 kW/m2 heat flux during a cone calorimeter test was obtained, with fast extinguishment of the flame and a low peak of Heat Release Rate (pHRR) and Total Heat Release (THR). The physical barrier formed by vermiculite platelets during the test, as well as the condensed phase mechanism of K2CO3 were found to be responsible for these excellent results, as found by confocal microscopy observations, electron probe micro analysis and X-Ray diffraction experiments.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
European Project :
Administrative institution(s) :
Université de Lille
CNRS
INRA
ENSCL
CNRS
INRA
ENSCL
Collections :
Research team(s) :
Ingénierie des Systèmes Polymères
Submission date :
2020-08-12T12:04:50Z
2020-08-31T13:38:09Z
2020-08-31T13:38:09Z
Files
- PDS_revised manuscrit_hydrogel 3D_without underlined correction.pdf
- Version finale acceptée pour publication (postprint)
- Open access
- Access the document