Galvanic Coupling Effect on Pitting Corrosion ...
Document type :
Article dans une revue scientifique
Permalink :
Title :
Galvanic Coupling Effect on Pitting Corrosion of 316L Austenitic Stainless Steel Welded Joints
Author(s) :
Sriba, Amina [Auteur]
Vogt, Jean-Bernard [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Vogt, Jean-Bernard [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Journal title :
Metals and Materials International
Abbreviated title :
Met. Mater. Int.
Publisher :
Springer Science and Business Media LLC
Publication date :
2020-07-13
HAL domain(s) :
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Chimie/Matériaux
Chimie/Matériaux
English abstract : [en]
The aim of this work is to display the effect of the chemical composition of the filler metal (ER316LN and ER308LN) on the corrosion resistance of 316L austenitic stainless steel welded joints, performed using GTAW process. ...
Show more >The aim of this work is to display the effect of the chemical composition of the filler metal (ER316LN and ER308LN) on the corrosion resistance of 316L austenitic stainless steel welded joints, performed using GTAW process. The redistribution of chemical elements from the base metal and from the filler metal in the fusion zone during the welding operation produces a variation in the microscopic structure along the welded joint. The latter comprises distinct microstructural zones identified as fusion zone, fusion line (partially melted zone), heat affected zone, and the unaffected base metal with their own electrochemical response. Our results revealed that the base metal constitutes the anodic region in the welded joint, while the fusion zones behave as the cathodic part protected against corrosion. From the electrochemical corrosion tests, it is concluded that the welded joint 316L/ER308LN exhibits a better resistance to pitting corrosion than the welded joint 316L/ER316LN, but is less resistant to corrosion by dissolution.Show less >
Show more >The aim of this work is to display the effect of the chemical composition of the filler metal (ER316LN and ER308LN) on the corrosion resistance of 316L austenitic stainless steel welded joints, performed using GTAW process. The redistribution of chemical elements from the base metal and from the filler metal in the fusion zone during the welding operation produces a variation in the microscopic structure along the welded joint. The latter comprises distinct microstructural zones identified as fusion zone, fusion line (partially melted zone), heat affected zone, and the unaffected base metal with their own electrochemical response. Our results revealed that the base metal constitutes the anodic region in the welded joint, while the fusion zones behave as the cathodic part protected against corrosion. From the electrochemical corrosion tests, it is concluded that the welded joint 316L/ER308LN exhibits a better resistance to pitting corrosion than the welded joint 316L/ER316LN, but is less resistant to corrosion by dissolution.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
CNRS
INRA
ENSCL
CNRS
INRA
ENSCL
Collections :
Research team(s) :
Métallurgie Physique et Génie des Matériaux
Submission date :
2020-08-28T15:22:56Z
2020-09-01T09:39:14Z
2020-09-01T09:39:14Z