Kinetics and mechanism of polymorphic ...
Type de document :
Article dans une revue scientifique: Article original
URL permanente :
Titre :
Kinetics and mechanism of polymorphic transformation of sorbitol under mechanical milling
Auteur(s) :
Dupont, Anthony [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Guerain, Mathieu [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Danede, Florence [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Paccou, Laurent [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Guinet, Yannick [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Hedoux, Alain [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
willart, Jean-François [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Guerain, Mathieu [Auteur]

Unité Matériaux et Transformations - UMR 8207 [UMET]
Danede, Florence [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Paccou, Laurent [Auteur]

Unité Matériaux et Transformations - UMR 8207 [UMET]
Guinet, Yannick [Auteur]

Unité Matériaux et Transformations - UMR 8207 [UMET]
Hedoux, Alain [Auteur]

Unité Matériaux et Transformations - UMR 8207 [UMET]
willart, Jean-François [Auteur]

Unité Matériaux et Transformations - UMR 8207 [UMET]
Titre de la revue :
International Journal of Pharmaceutics
Numéro :
590
Pagination :
119902
Éditeur :
Elsevier BV
Date de publication :
2020-11
ISSN :
0378-5173
Discipline(s) HAL :
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Physique [physics]/Matière Condensée [cond-mat]/Matière Molle [cond-mat.soft]
Physique [physics]/Matière Condensée [cond-mat]/Systèmes désordonnés et réseaux de neurones [cond-mat.dis-nn]
Physique [physics]/Matière Condensée [cond-mat]/Matière Molle [cond-mat.soft]
Physique [physics]/Matière Condensée [cond-mat]/Systèmes désordonnés et réseaux de neurones [cond-mat.dis-nn]
Résumé en anglais : [en]
In this paper, we present a kinetic investigation of the polymorphic transformation γ → α of sorbitol under milling in the objective to identify the microscopic mechanisms that govern this type of solid-state transformation. ...
Lire la suite >In this paper, we present a kinetic investigation of the polymorphic transformation γ → α of sorbitol under milling in the objective to identify the microscopic mechanisms that govern this type of solid-state transformation. The milling was performed with a high energy planetary mill and the milled material was analysed by DSC, PXRD and Raman spectrometry. The transformation kinetics was found to be sigmoidal with a noticeable incubation time. Moreover, this incubation time was shown to shorten rapidly when seeding the initial form γ with the final form α. The origin of the incubation period and its evolution upon seeding are puzzling as polymorphic transformations induced by milling are not expected to occur through a nucleation and growth process. To explain these puzzling kinetic features, we propose a two-step transformation mechanism involving local amorphisations due to the mechanical impacts, immediately followed by rapid recrystallizations of the amorphized fractions. The key point of the mechanism is that recrystallizations are oriented towards the forms γ or α, depending on the crystalline form of neighbouring crystallites. This mechanism has been validated by numerical simulations which were able to reproduce all the experimental kinetic features of the polymorphic transformation (kinetic law and effects of seeding) upon milling.Lire moins >
Lire la suite >In this paper, we present a kinetic investigation of the polymorphic transformation γ → α of sorbitol under milling in the objective to identify the microscopic mechanisms that govern this type of solid-state transformation. The milling was performed with a high energy planetary mill and the milled material was analysed by DSC, PXRD and Raman spectrometry. The transformation kinetics was found to be sigmoidal with a noticeable incubation time. Moreover, this incubation time was shown to shorten rapidly when seeding the initial form γ with the final form α. The origin of the incubation period and its evolution upon seeding are puzzling as polymorphic transformations induced by milling are not expected to occur through a nucleation and growth process. To explain these puzzling kinetic features, we propose a two-step transformation mechanism involving local amorphisations due to the mechanical impacts, immediately followed by rapid recrystallizations of the amorphized fractions. The key point of the mechanism is that recrystallizations are oriented towards the forms γ or α, depending on the crystalline form of neighbouring crystallites. This mechanism has been validated by numerical simulations which were able to reproduce all the experimental kinetic features of the polymorphic transformation (kinetic law and effects of seeding) upon milling.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
CNRS
INRA
ENSCL
CNRS
INRA
ENSCL
Collections :
Équipe(s) de recherche :
Matériaux Moléculaires et Thérapeutiques
Date de dépôt :
2020-10-12T14:23:58Z
2020-10-13T10:17:20Z
2020-10-13T10:17:20Z
Fichiers
- 11-Dupont - kinetic and mechanism of polymorphic transformation.pdf
- Version finale acceptée pour publication (postprint)
- Accès libre
- Accéder au document