Mobility and versatility of the liquid ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
URL permanente :
Titre :
Mobility and versatility of the liquid bismuth promoter in the working iron catalysts for light olefin synthesis from syngas
Auteur(s) :
Bang, Gu [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Barrios, Alan [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Bahri, Mounib [Auteur]
Institut de Physique et Chimie des Matériaux de Strasbourg [IPCMS]
Ersen, Ovidiu [Auteur]
Institut de Physique et Chimie des Matériaux de Strasbourg [IPCMS]
Vorokhta, Michajlo [Auteur]
Smid, Bretislav [Auteur]
Benerjee, Dipanjan [Auteur]
Virginie, Mirella [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Marceau, Eric [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Wojcieszak, Robert [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Ordomsky, Vitaly [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Khodakov, Andrei [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Barrios, Alan [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Bahri, Mounib [Auteur]
Institut de Physique et Chimie des Matériaux de Strasbourg [IPCMS]
Ersen, Ovidiu [Auteur]
Institut de Physique et Chimie des Matériaux de Strasbourg [IPCMS]
Vorokhta, Michajlo [Auteur]
Smid, Bretislav [Auteur]
Benerjee, Dipanjan [Auteur]
Virginie, Mirella [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Marceau, Eric [Auteur]

Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Wojcieszak, Robert [Auteur]

Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Ordomsky, Vitaly [Auteur]

Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Khodakov, Andrei [Auteur]

Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Titre de la revue :
Chemical Science
Numéro :
11
Pagination :
6167-6182
Date de publication :
2020-05-27
Discipline(s) HAL :
Chimie/Catalyse
Résumé en anglais : [en]
Liquid metals are a new emerging and rapidly growing class of materials and can be considered as efficient promoters and active phases for heterogeneous catalysts for sustainable processes. Because of low cost, high ...
Lire la suite >Liquid metals are a new emerging and rapidly growing class of materials and can be considered as efficient promoters and active phases for heterogeneous catalysts for sustainable processes. Because of low cost, high selectivity and flexibility, iron-based catalysts are the catalysts of choice for light olefin synthesis via Fischer–Tropsch reaction. Promotion of iron catalysts supported by carbon nanotubes with bismuth, which is liquid under the reaction conditions, results in a several fold increase in the reaction rate and in a much higher light olefin selectivity. In order to elucidate the spectacular enhancement of the catalytic performance, we conducted extensive in-depth characterization of the bismuth-promoted iron catalysts under the reacting gas and reaction temperatures by a combination of cutting-edge in situ techniques: in situ scanning transmission electron microscopy, near-atmospheric pressure X-ray photoelectron spectroscopy and in situ X-ray adsorption near edge structure. In situ scanning transmission electron microscopy conducted under atmospheric pressure of carbon monoxide at the temperature of catalyst activation showed iron sintering proceeding via the particle migration and coalescence mechanism. Catalyst activation in carbon monoxide and in syngas leads to liquid bismuth metallic species, which readily migrate over the catalyst surface with the formation of larger spherical bismuth droplets and iron–bismuth core–shell structures. In the working catalysts, during Fischer–Tropsch synthesis, metallic bismuth located at the interface of iron species undergoes continuous oxidation and reduction cycles, which facilitate carbon monoxide dissociation and result in the substantial increase in the reaction rate.Lire moins >
Lire la suite >Liquid metals are a new emerging and rapidly growing class of materials and can be considered as efficient promoters and active phases for heterogeneous catalysts for sustainable processes. Because of low cost, high selectivity and flexibility, iron-based catalysts are the catalysts of choice for light olefin synthesis via Fischer–Tropsch reaction. Promotion of iron catalysts supported by carbon nanotubes with bismuth, which is liquid under the reaction conditions, results in a several fold increase in the reaction rate and in a much higher light olefin selectivity. In order to elucidate the spectacular enhancement of the catalytic performance, we conducted extensive in-depth characterization of the bismuth-promoted iron catalysts under the reacting gas and reaction temperatures by a combination of cutting-edge in situ techniques: in situ scanning transmission electron microscopy, near-atmospheric pressure X-ray photoelectron spectroscopy and in situ X-ray adsorption near edge structure. In situ scanning transmission electron microscopy conducted under atmospheric pressure of carbon monoxide at the temperature of catalyst activation showed iron sintering proceeding via the particle migration and coalescence mechanism. Catalyst activation in carbon monoxide and in syngas leads to liquid bismuth metallic species, which readily migrate over the catalyst surface with the formation of larger spherical bismuth droplets and iron–bismuth core–shell structures. In the working catalysts, during Fischer–Tropsch synthesis, metallic bismuth located at the interface of iron species undergoes continuous oxidation and reduction cycles, which facilitate carbon monoxide dissociation and result in the substantial increase in the reaction rate.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Établissement(s) :
Université de Lille
CNRS
Centrale Lille
ENSCL
Univ. Artois
CNRS
Centrale Lille
ENSCL
Univ. Artois
Collections :
Équipe(s) de recherche :
Valorisation des alcanes et de la biomasse (VAALBIO)
Catalyse pour l’énergie (CATEN)
Catalyse pour l’énergie (CATEN)
Date de dépôt :
2020-11-25T12:41:43Z
2020-11-25T18:52:00Z
2020-11-25T18:52:00Z
Fichiers
- d0sc01600d.pdf
- Version éditeur
- Accès libre
- Accéder au document