Thermal and energetic behaviour of ...
Document type :
Article dans une revue scientifique
Permalink :
Title :
Thermal and energetic behaviour of solid-solid-liquid phase change materials storage unit: Experimental and numerical comparative study of the top, bottom and horizontal configurations
Author(s) :
Harmen, Yasser [Auteur]
Université Ibn Tofaïl [UIT]
Université Chouaib Doukkali [UCD]
Chhiti, Younes [Auteur]
Université Ibn Tofaïl [UIT]
M’Hamdi Alaoui, Fatima Ezzahrae [Auteur]
Université Chouaib Doukkali [UCD]
Bentiss, Fouad [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Université Chouaib Doukkali [UCD]
El Khouakhi, Mohamed [Auteur]
Jama, charafeddine [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Unité Matériaux et Transformations (UMET) - UMR 8207
Duquesne, Sophie [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Unité Matériaux et Transformations (UMET) - UMR 8207
Bensitel, Mohammed [Auteur]
Université Chouaib Doukkali [UCD]
Deshayes, Laurent [Auteur]
Université Ibn Tofaïl [UIT]
Université Chouaib Doukkali [UCD]
Chhiti, Younes [Auteur]
Université Ibn Tofaïl [UIT]
M’Hamdi Alaoui, Fatima Ezzahrae [Auteur]
Université Chouaib Doukkali [UCD]
Bentiss, Fouad [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Université Chouaib Doukkali [UCD]
El Khouakhi, Mohamed [Auteur]
Jama, charafeddine [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Unité Matériaux et Transformations (UMET) - UMR 8207
Duquesne, Sophie [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Unité Matériaux et Transformations (UMET) - UMR 8207
Bensitel, Mohammed [Auteur]
Université Chouaib Doukkali [UCD]
Deshayes, Laurent [Auteur]
Journal title :
Journal of Energy Storage
Volume number :
33
Pages :
102025
Publisher :
Elsevier BV
Publication date :
2021-01
Article status :
À paraître
ISSN :
2352-152X
English keyword(s) :
Thermal energy storage
Latent heat
Phase Change Materials (PCM)
Experimental investigation
Computational Fluid Dynamics (CFD)
Latent heat
Phase Change Materials (PCM)
Experimental investigation
Computational Fluid Dynamics (CFD)
HAL domain(s) :
Chimie/Matériaux
Chimie/Polymères
Chimie/Polymères
English abstract : [en]
Thermal energy storage technology with Phase Change Materials (PCM) is an attractive option to optimise energy resources and to recover and promote excess heat. The phase change behaviour of PCM requires advanced research ...
Show more >Thermal energy storage technology with Phase Change Materials (PCM) is an attractive option to optimise energy resources and to recover and promote excess heat. The phase change behaviour of PCM requires advanced research to understand and better control the thermal energy storage using PCM, which is a crucial step to develop a powerful latent storage system. This paper aims to analyse the multiphysics phenomena of three regenerator configurations, horizontal case and two injection direction of Heat Transfer Fluid (HTF): top and bottom in vertical case. The study is done for the charge and discharge cycles of the solid-solid and solid-liquid phase transitions of PCM. First, the temperature dependence of the thermal and physical properties of paraffin as PCM is characterised. Second, an experimental study of an annular latent storage system was carried out. Also, an experimental mesh method was introduced to compare the energy behaviour of the three cases. Third, a numerical analysis of the experimental storage unit with low thermal diffusion is performed. The experimental results are confronted with the numerical results obtained with ANSYS Fluent and COMSOL Multiphysics commercial software. Last, the three configurations are compared to a reference case without gravitational field. The results show that specific mechanisms control the thermal and energetic behaviour of the regenerator. Furthermore, several parameters, such as storage density, distribution of energy storage rate in the different regenerator components (PCM, HTF, and heat exchanger), were analysed. Altogether, the results supply important information to understand the dynamics of passive storage systems.Show less >
Show more >Thermal energy storage technology with Phase Change Materials (PCM) is an attractive option to optimise energy resources and to recover and promote excess heat. The phase change behaviour of PCM requires advanced research to understand and better control the thermal energy storage using PCM, which is a crucial step to develop a powerful latent storage system. This paper aims to analyse the multiphysics phenomena of three regenerator configurations, horizontal case and two injection direction of Heat Transfer Fluid (HTF): top and bottom in vertical case. The study is done for the charge and discharge cycles of the solid-solid and solid-liquid phase transitions of PCM. First, the temperature dependence of the thermal and physical properties of paraffin as PCM is characterised. Second, an experimental study of an annular latent storage system was carried out. Also, an experimental mesh method was introduced to compare the energy behaviour of the three cases. Third, a numerical analysis of the experimental storage unit with low thermal diffusion is performed. The experimental results are confronted with the numerical results obtained with ANSYS Fluent and COMSOL Multiphysics commercial software. Last, the three configurations are compared to a reference case without gravitational field. The results show that specific mechanisms control the thermal and energetic behaviour of the regenerator. Furthermore, several parameters, such as storage density, distribution of energy storage rate in the different regenerator components (PCM, HTF, and heat exchanger), were analysed. Altogether, the results supply important information to understand the dynamics of passive storage systems.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
CNRS
INRA
ENSCL
CNRS
INRA
ENSCL
Collections :
Research team(s) :
Ingénierie des Systèmes Polymères
Submission date :
2020-12-07T14:31:48Z
2020-12-08T10:28:46Z
2020-12-08T10:28:46Z