• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Évolution, Écologie et Paléontologie (Evo Eco Paleo) - UMR 8198
  • View Item
  •   LillOA Home
  • Liste des unités
  • Évolution, Écologie et Paléontologie (Evo Eco Paleo) - UMR 8198
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Stochastic dynamics for adaptation and ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Communication dans un congrès avec actes
Title :
Stochastic dynamics for adaptation and evolution of microorganisms
Author(s) :
Billiard, Sylvain [Auteur]
Évolution, Écologie et Paléontologie (Evo-Eco-Paleo) - UMR 8198 [Evo-Eco-Paléo (EEP)]
Collet, Pierre [Auteur]
Centre de Physique Théorique [Palaiseau] [CPHT]
Ferrière, Régis [Auteur]
Eco-évolution mathématique - IBENS
Méléard, Sylvie [Auteur]
Centre de Mathématiques Appliquées [CMAP]
Tran, Chi [Auteur] refId
Laboratoire Paul Painlevé [LPP]
Scientific editor(s) :
V. Mehrmann and M. Skutella eds.
Conference title :
European Congress of Mathematics
City :
Berlin
Country :
Allemagne
Start date of the conference :
2016
Publisher :
European Mathematical Society
Publication date :
2018
English keyword(s) :
large population approximation
bacterial conjugation
trait substitution sequence
fixation probability
canonical equation
adaptive dynamics
stochastic individual-based models
horizontal gene transfer
interactions
HAL domain(s) :
Mathématiques [math]/Probabilités [math.PR]
Sciences de l'environnement/Biodiversité et Ecologie
Sciences du Vivant [q-bio]/Biodiversité/Evolution [q-bio.PE]
English abstract : [en]
We present a model for the dynamics of a population of bacteria with a continuum of traits, who compete for resources and exchange horizontally (transfer) an otherwise vertically inherited trait with possible mutations. ...
Show more >
We present a model for the dynamics of a population of bacteria with a continuum of traits, who compete for resources and exchange horizontally (transfer) an otherwise vertically inherited trait with possible mutations. Competition influences individual demographics, affecting population size, which feeds back on the dynamics of transfer. We consider a stochastic individual-based pure jump process taking values in the space of point measures, and whose jump events describe the individual reproduction, transfer and death mechanisms. In a large population scale, the stochastic process is proved to converge to the solution of a nonlinear integro-differential equation. When there are only two different traits and no mutation, this equation reduces to a non-standard two-dimensional dynamical system. We show how crucial the forms of the transfer rates are for the long-term behavior of its solutions. We describe the dynamics of invasion and fixation when one of the two traits is initially rare, and compute the invasion probabilities. Then, we study the process under the assumption of rare mutations. We prove that the stochastic process at the mutation time scale converges to a jump process which describes the successive invasions of successful mutants. We show that the horizontal transfer can have a major impact on the distribution of the successive mutational fixations, leading to dramatically different behaviors, from expected evolution scenarios to evolutionary suicide. Simulations are given to illustrate these phenomena.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
Centre Européen pour les Mathématiques, la Physique et leurs Interactions
Collections :
  • Évolution, Écologie et Paléontologie (Evo Eco Paleo) - UMR 8198
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-01374179v2/document
  • Open access
  • Access the document
Thumbnail
  • http://arxiv.org/pdf/1610.00983
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-01374179v2/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-01374179v2/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-01374179v2/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017