The Impact of Compressed Femtosecond Laser ...
Document type :
Article dans une revue scientifique
Title :
The Impact of Compressed Femtosecond Laser Pulse Durations on Neuronal Tissue Used for Two-Photon Excitation Through an Endoscope
Author(s) :
Sibai, Mira [Auteur]
Imagerie et Modélisation en Neurobiologie et Cancérologie [IMNC (UMR_8165)]
Mehidine, Hussein [Auteur]
Université Paris Diderot - Paris 7 [UPD7]
Imagerie et Modélisation en Neurobiologie et Cancérologie [IMNC (UMR_8165)]
Poulon, Fanny [Auteur]
Imagerie et Modélisation en Neurobiologie et Cancérologie [IMNC (UMR_8165)]
Ibrahim, Ali [Auteur]
Imagerie et Modélisation en Neurobiologie et Cancérologie [IMNC (UMR_8165)]
Varlet, P. [Auteur]
Juchaux, M. [Auteur]
Imagerie et Modélisation en Neurobiologie et Cancérologie [IMNC (UMR_8165)]
Pallud, J. [Auteur]
Devaux, B. [Auteur]
Kudlinski, A. [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Abi Haidar, Darine [Auteur]
Université Paris Diderot - Paris 7 [UPD7]
Imagerie et Modélisation en Neurobiologie et Cancérologie [IMNC (UMR_8165)]
Imagerie et Modélisation en Neurobiologie et Cancérologie [IMNC (UMR_8165)]
Mehidine, Hussein [Auteur]
Université Paris Diderot - Paris 7 [UPD7]
Imagerie et Modélisation en Neurobiologie et Cancérologie [IMNC (UMR_8165)]
Poulon, Fanny [Auteur]
Imagerie et Modélisation en Neurobiologie et Cancérologie [IMNC (UMR_8165)]
Ibrahim, Ali [Auteur]
Imagerie et Modélisation en Neurobiologie et Cancérologie [IMNC (UMR_8165)]
Varlet, P. [Auteur]
Juchaux, M. [Auteur]
Imagerie et Modélisation en Neurobiologie et Cancérologie [IMNC (UMR_8165)]
Pallud, J. [Auteur]
Devaux, B. [Auteur]
Kudlinski, A. [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Abi Haidar, Darine [Auteur]
Université Paris Diderot - Paris 7 [UPD7]
Imagerie et Modélisation en Neurobiologie et Cancérologie [IMNC (UMR_8165)]
Journal title :
SCIENTIFIC REPORTS
Pages :
11124
Publisher :
Nature Publishing Group
Publication date :
2018
ISSN :
2045-2322
HAL domain(s) :
Physique [physics]
English abstract : [en]
Accurate intraoperative tumour margin assessment is a major challenge in neurooncology, where sparse tumours beyond the bulk tumour are left undetected under conventional resection. Non-linear optical imaging can diagnose ...
Show more >Accurate intraoperative tumour margin assessment is a major challenge in neurooncology, where sparse tumours beyond the bulk tumour are left undetected under conventional resection. Non-linear optical imaging can diagnose tissue at the sub-micron level and provide functional label-free histopathology in vivo. For this reason, a non-linear endomicroscope is being developed to characterize brain tissue intraoperatively based on multiple endogenous optical contrasts such as spectrally- and temporally-resolved fluorescence. To produce highly sensitive optical signatures that are specific to a given tissue type, short femtosecond pulsed lasers are required for efficient two-photon excitation. Yet, the potential of causing bio-damage has not been studied on neuronal tissue. Therefore, as a prerequisite to clinically testing the non-linear endomicroscope in vivo, the effect of short laser pulse durations (40-340 fs) on ex vivo brain tissue was investigated by monitoring the intensity, the spectral, and the lifetime properties of endogenous fluorophores under 800 and 890 nm two-photon excitation using a bi-modal non-linear endoscope. These properties were also validated by imaging samples on a benchtop multiphoton microscope. Our results show that under a constant mean laser power, excitation pulses as short as 40 fs do not negatively alter the biochemical/ biophysical properties of tissue even for prolonged irradiation.Show less >
Show more >Accurate intraoperative tumour margin assessment is a major challenge in neurooncology, where sparse tumours beyond the bulk tumour are left undetected under conventional resection. Non-linear optical imaging can diagnose tissue at the sub-micron level and provide functional label-free histopathology in vivo. For this reason, a non-linear endomicroscope is being developed to characterize brain tissue intraoperatively based on multiple endogenous optical contrasts such as spectrally- and temporally-resolved fluorescence. To produce highly sensitive optical signatures that are specific to a given tissue type, short femtosecond pulsed lasers are required for efficient two-photon excitation. Yet, the potential of causing bio-damage has not been studied on neuronal tissue. Therefore, as a prerequisite to clinically testing the non-linear endomicroscope in vivo, the effect of short laser pulse durations (40-340 fs) on ex vivo brain tissue was investigated by monitoring the intensity, the spectral, and the lifetime properties of endogenous fluorophores under 800 and 890 nm two-photon excitation using a bi-modal non-linear endoscope. These properties were also validated by imaging samples on a benchtop multiphoton microscope. Our results show that under a constant mean laser power, excitation pulses as short as 40 fs do not negatively alter the biochemical/ biophysical properties of tissue even for prolonged irradiation.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Source :
Files
- https://www.nature.com/articles/s41598-018-29404-8.pdf
- Open access
- Access the document