Bifurcations of emerging patterns in the ...
Document type :
Article dans une revue scientifique
Title :
Bifurcations of emerging patterns in the presence of additive noise
Author(s) :
Agez, Gonzague [Auteur]
Centre d'élaboration de matériaux et d'études structurales [CEMES]
Clerc, Marcel G [Auteur]
Universidad de Chile = University of Chile [Santiago] [UCHILE]
Louvergneaux, Eric [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Rojas, René G [Auteur]
Pontificia Universidad Católica de Valparaíso [PUCV]
Centre d'élaboration de matériaux et d'études structurales [CEMES]
Clerc, Marcel G [Auteur]
Universidad de Chile = University of Chile [Santiago] [UCHILE]
Louvergneaux, Eric [Auteur]

Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Rojas, René G [Auteur]
Pontificia Universidad Católica de Valparaíso [PUCV]
Journal title :
Physical Review E
Pages :
042919
Publisher :
American Physical Society (APS)
Publication date :
2013
ISSN :
2470-0045
HAL domain(s) :
Physique [physics]
English abstract : [en]
A universal description of the effects of additive noise on super-and subcritical spatial bifurcations in one-dimensional systems is theoretically, numerically, and experimentally studied. The probability density of the ...
Show more >A universal description of the effects of additive noise on super-and subcritical spatial bifurcations in one-dimensional systems is theoretically, numerically, and experimentally studied. The probability density of the critical spatial mode amplitude is derived. From this generalized Rayleigh distribution we predict the shape of noisy bifurcations by means of the most probable value of the critical mode amplitude. Comparisons with numerical simulations are in quite good agreement for cubic or quintic amplitude equations accounting for stochastic supercritical bifurcation and for cubic-quintic amplitude equation accounting for stochastic subcritical bifurcation. Experimental results obtained in a one-dimensional Kerr-like slice subjected to optical feedback confirm the analytical expression prediction for the supercritical bifurcation shape.Show less >
Show more >A universal description of the effects of additive noise on super-and subcritical spatial bifurcations in one-dimensional systems is theoretically, numerically, and experimentally studied. The probability density of the critical spatial mode amplitude is derived. From this generalized Rayleigh distribution we predict the shape of noisy bifurcations by means of the most probable value of the critical mode amplitude. Comparisons with numerical simulations are in quite good agreement for cubic or quintic amplitude equations accounting for stochastic supercritical bifurcation and for cubic-quintic amplitude equation accounting for stochastic subcritical bifurcation. Experimental results obtained in a one-dimensional Kerr-like slice subjected to optical feedback confirm the analytical expression prediction for the supercritical bifurcation shape.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Source :
Files
- https://hal.archives-ouvertes.fr/hal-01730533/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-01730533/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-01730533/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-01730533/document
- Open access
- Access the document