The vibrational structure of the oxygen ...
Document type :
Compte-rendu et recension critique d'ouvrage
DOI :
PMID :
Title :
The vibrational structure of the oxygen K-shell spectra in acenaphthenequinones: an ab initio study.
Author(s) :
Duflot, Denis [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Flament, Jean-Pierre [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Flament, Jean-Pierre [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Journal title :
The Journal of Chemical Physics
Pages :
014314
Publisher :
American Institute of Physics
Publication date :
2012-07-07
ISSN :
0021-9606
HAL domain(s) :
Chimie/Chimie théorique et/ou physique
English abstract : [en]
The vibrational structure of the K-shell O1s → π∗ of acenaphthenequinone C(12)H(6)O(2) and its halogenated compound C(12)H(2)Br(2)Cl(2)O(2) has been simulated using an entirely ab initio approach. For both molecules, ...
Show more >The vibrational structure of the K-shell O1s → π∗ of acenaphthenequinone C(12)H(6)O(2) and its halogenated compound C(12)H(2)Br(2)Cl(2)O(2) has been simulated using an entirely ab initio approach. For both molecules, analysis of the calculated Franck-Condon factors confirm without ambiguity that, contrary to initial claims, the C-H stretching modes are not modified in the core states and are not excited. For C(12)H(6)O(2), the vibrational fine structure appears to be mainly due to three modes, involving C=O∗ asymmetric stretch and in-plane ring deformation modes, due to the symmetry breaking of the core state. For C(12)H(2)Br(2)Cl(2)O(2), the vibrational excitation arises essentially from the C=O∗ asymmetric stretch, with numerous secondary peaks arising from hot and combination bands. For both molecules, these bands are probably responsible for the asymmetry deduced in the experimental fits using a unique Morse potential and initially assigned to anharmonic effects.Show less >
Show more >The vibrational structure of the K-shell O1s → π∗ of acenaphthenequinone C(12)H(6)O(2) and its halogenated compound C(12)H(2)Br(2)Cl(2)O(2) has been simulated using an entirely ab initio approach. For both molecules, analysis of the calculated Franck-Condon factors confirm without ambiguity that, contrary to initial claims, the C-H stretching modes are not modified in the core states and are not excited. For C(12)H(6)O(2), the vibrational fine structure appears to be mainly due to three modes, involving C=O∗ asymmetric stretch and in-plane ring deformation modes, due to the symmetry breaking of the core state. For C(12)H(2)Br(2)Cl(2)O(2), the vibrational excitation arises essentially from the C=O∗ asymmetric stretch, with numerous secondary peaks arising from hot and combination bands. For both molecules, these bands are probably responsible for the asymmetry deduced in the experimental fits using a unique Morse potential and initially assigned to anharmonic effects.Show less >
Language :
Anglais
Popular science :
Non
Source :