How Does the Solvation Unveil AtO+ Reactivity?
Document type :
Article dans une revue scientifique: Article original
DOI :
Title :
How Does the Solvation Unveil AtO+ Reactivity?
Author(s) :
Ayed, T. [Auteur]
Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation [CEISAM]
Seydou, M. [Auteur]
Interfaces, Traitements, Organisation et Dynamique des Systèmes [ITODYS (UMR_7086)]
Réal, F. [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Montavon, Gilles [Auteur]
Laboratoire SUBATECH Nantes [SUBATECH]
Galland, N. [Auteur]
Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation [CEISAM]
Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation [CEISAM]
Seydou, M. [Auteur]
Interfaces, Traitements, Organisation et Dynamique des Systèmes [ITODYS (UMR_7086)]
Réal, F. [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Montavon, Gilles [Auteur]
Laboratoire SUBATECH Nantes [SUBATECH]
Galland, N. [Auteur]
Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation [CEISAM]
Journal title :
Journal of Physical Chemistry B
Pages :
5206-5211
Publisher :
American Chemical Society
Publication date :
2013
ISSN :
1520-6106
HAL domain(s) :
Physique [physics]/Physique [physics]/Chimie-Physique [physics.chem-ph]
English abstract : [en]
The AtO+ molecular ion, a potential precursor for the synthesis of radiotherapeutic agents in nuclear medicine, readily reacts in aqueous solution with organic and inorganic compounds, but at first glance, these reactions ...
Show more >The AtO+ molecular ion, a potential precursor for the synthesis of radiotherapeutic agents in nuclear medicine, readily reacts in aqueous solution with organic and inorganic compounds, but at first glance, these reactions must be hindered by spin restriction quantum rules. Using relativistic quantum calculations, coupled to implicit solvation models, on the most stable AtO+(H2O)6 clusters, we demonstrate that specific interactions with water molecules of the first solvation shell induce a spin change for the AtO+ ground state, from a spin state of triplet character in the gas phase to a Kramers-restricted closed-shell configuration in solution. This peculiarity allows rationalization of the AtO+ reactivity with closed-shell species in aqueous solution and may explain the differences in astatine reactivity observed in 211At production protocols based on "wet" and "dry" processes.Show less >
Show more >The AtO+ molecular ion, a potential precursor for the synthesis of radiotherapeutic agents in nuclear medicine, readily reacts in aqueous solution with organic and inorganic compounds, but at first glance, these reactions must be hindered by spin restriction quantum rules. Using relativistic quantum calculations, coupled to implicit solvation models, on the most stable AtO+(H2O)6 clusters, we demonstrate that specific interactions with water molecules of the first solvation shell induce a spin change for the AtO+ ground state, from a spin state of triplet character in the gas phase to a Kramers-restricted closed-shell configuration in solution. This peculiarity allows rationalization of the AtO+ reactivity with closed-shell species in aqueous solution and may explain the differences in astatine reactivity observed in 211At production protocols based on "wet" and "dry" processes.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Non spécifiée
Popular science :
Non
ANR Project :
Source :