Thermal analysis of interpenetrating polymer ...
Type de document :
Article dans une revue scientifique: Article original
URL permanente :
Titre :
Thermal analysis of interpenetrating polymer networks through molecular dynamics simulations: a comparison with experiments
Auteur(s) :
Boudraa, Kamel [Auteur]
University of Saida
Bouchaour, Tewfik [Auteur]
Maschke, Ulrich [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
University of Saida
Bouchaour, Tewfik [Auteur]
Maschke, Ulrich [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Titre de la revue :
Journal of Thermal Analysis and Calorimetry
Nom court de la revue :
J Therm Anal Calorim
Numéro :
140
Pagination :
1845-1857
Éditeur :
Springer Science and Business Media LLC
Date de publication :
2019-11-02
Discipline(s) HAL :
Chimie/Matériaux
Chimie/Polymères
Chimie/Polymères
Résumé en anglais : [en]
In this work, we verified the synthesis of a novel sequential interpenetrating polymer network, composed of poly(2-hexyl-ethylacrylate) and poly(n-butyl acrylate) named PHEA and PBuA, respectively, and we studied the ...
Lire la suite >In this work, we verified the synthesis of a novel sequential interpenetrating polymer network, composed of poly(2-hexyl-ethylacrylate) and poly(n-butyl acrylate) named PHEA and PBuA, respectively, and we studied the physical properties by means of thermogravimetric analysis and differential scanning calorimetry techniques. An increase in the thermal stability is found with the increase in the density of the polymer network, and the amount of the absorbed monomer by the network has a great influence on its behavior and glass transition temperature. We supplement this job by applying molecular dynamics simulation methods (free volume, radial distribution function) to investigate the properties of these polymer networks and effects of composition ratios and temperature by introducing a new comprehensive and reproducible atomistic model for the generation and property evaluation of interpenetrating polymer networks. The simulation presented from the discontinuity in the different plots versus temperature of the specific volume or radial distribution function, demonstrates that the glass transition temperature (Tg) values were in good agreement with experimental values.Lire moins >
Lire la suite >In this work, we verified the synthesis of a novel sequential interpenetrating polymer network, composed of poly(2-hexyl-ethylacrylate) and poly(n-butyl acrylate) named PHEA and PBuA, respectively, and we studied the physical properties by means of thermogravimetric analysis and differential scanning calorimetry techniques. An increase in the thermal stability is found with the increase in the density of the polymer network, and the amount of the absorbed monomer by the network has a great influence on its behavior and glass transition temperature. We supplement this job by applying molecular dynamics simulation methods (free volume, radial distribution function) to investigate the properties of these polymer networks and effects of composition ratios and temperature by introducing a new comprehensive and reproducible atomistic model for the generation and property evaluation of interpenetrating polymer networks. The simulation presented from the discontinuity in the different plots versus temperature of the specific volume or radial distribution function, demonstrates that the glass transition temperature (Tg) values were in good agreement with experimental values.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
CNRS
INRA
ENSCL
CNRS
INRA
ENSCL
Collections :
Équipe(s) de recherche :
Ingénierie des Systèmes Polymères
Date de dépôt :
2019-11-22T14:59:33Z
2019-11-22T19:46:42Z
2021-01-07T19:27:20Z
2019-11-22T19:46:42Z
2021-01-07T19:27:20Z
Fichiers
- ACCEPTED MANUSCRIPT_Thermal analysis of interpenetrating polymer networks through molecular dynamic simulations A comparison with experiments.pdf
- Version finale acceptée pour publication (postprint)
- Accès libre
- Accéder au document