Multiscale modeling of the effective ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
URL permanente :
Titre :
Multiscale modeling of the effective viscoplastic behavior of Mg 2 SiO 4 wadsleyite: bridging atomic and polycrystal scales
Auteur(s) :
Castelnau, O. [Auteur]
Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
Derrien, K. [Auteur]
Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
Ritterbex, S. [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Ehime University [Matsuyama, Japon]
Carrez, Philippe [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Cordier, Patrick [Auteur]
Institut universitaire de France [IUF]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Moulinec, H. [Auteur]
Laboratoire de Mécanique et d'Acoustique [Marseille] [LMA ]
Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
Derrien, K. [Auteur]
Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
Ritterbex, S. [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Ehime University [Matsuyama, Japon]
Carrez, Philippe [Auteur]

Unité Matériaux et Transformations - UMR 8207 [UMET]
Cordier, Patrick [Auteur]

Institut universitaire de France [IUF]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Moulinec, H. [Auteur]
Laboratoire de Mécanique et d'Acoustique [Marseille] [LMA ]
Titre de la revue :
Comptes Rendus. Mécanique
Numéro :
348
Pagination :
827-846
Éditeur :
Cellule MathDoc/CEDRAM
Date de publication :
2020-12
Statut de l’article :
Publié
ISSN :
1873-7234
Mot(s)-clé(s) en anglais :
Earth mantle
Multiscale modelling
Dislocations
Polycrystal
Viscoplasticity
Multiscale modelling
Dislocations
Polycrystal
Viscoplasticity
Discipline(s) HAL :
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Planète et Univers [physics]/Sciences de la Terre
Planète et Univers [physics]/Sciences de la Terre
Résumé en anglais : [en]
The viscoplastic behavior of polycrystalline Mg2SiO4 wadsleyite aggregates, a major high pressure phase of the mantle transition zone of the Earth (depth range: 410–520 km), is obtained by properly bridging several scale ...
Lire la suite >The viscoplastic behavior of polycrystalline Mg2SiO4 wadsleyite aggregates, a major high pressure phase of the mantle transition zone of the Earth (depth range: 410–520 km), is obtained by properly bridging several scale transition models. At the very fine nanometric scale corresponding to the dislocation core structure, the behavior of thermally activated plastic slip is modeled for strain-rates relevant for laboratory experimental conditions, at high pressure and for a wide range of temperatures, based on the Peierls–Nabarro– Galerkin model. Corresponding single slip reference resolved shear stresses and associated constitutive equations are deduced from Orowan’s equation in order to describe the average viscoplastic behavior at the grain scale, for the easiest slip systems. These data have been implemented in two grain-polycrystal scale transition models, a mean-field one (the recent Fully-Optimized Second-Order Viscoplastic Self-Consistent scheme of [1]) allowing rapid evaluation of the effective viscosity of polycrystalline aggregates, and a full-field (FFT based [2, 3]) method allowing investigating stress and strain-rate localization in typical microstructures and heterogeneous activation of slip systems within grains. Calculations have been performed at pressure and temperatures relevant for in-situ conditions. Results are in very good agreement with available mechanical tests conducted at strain-rates typical for laboratory experiments.Lire moins >
Lire la suite >The viscoplastic behavior of polycrystalline Mg2SiO4 wadsleyite aggregates, a major high pressure phase of the mantle transition zone of the Earth (depth range: 410–520 km), is obtained by properly bridging several scale transition models. At the very fine nanometric scale corresponding to the dislocation core structure, the behavior of thermally activated plastic slip is modeled for strain-rates relevant for laboratory experimental conditions, at high pressure and for a wide range of temperatures, based on the Peierls–Nabarro– Galerkin model. Corresponding single slip reference resolved shear stresses and associated constitutive equations are deduced from Orowan’s equation in order to describe the average viscoplastic behavior at the grain scale, for the easiest slip systems. These data have been implemented in two grain-polycrystal scale transition models, a mean-field one (the recent Fully-Optimized Second-Order Viscoplastic Self-Consistent scheme of [1]) allowing rapid evaluation of the effective viscosity of polycrystalline aggregates, and a full-field (FFT based [2, 3]) method allowing investigating stress and strain-rate localization in typical microstructures and heterogeneous activation of slip systems within grains. Calculations have been performed at pressure and temperatures relevant for in-situ conditions. Results are in very good agreement with available mechanical tests conducted at strain-rates typical for laboratory experiments.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Projet Européen :
Établissement(s) :
Université de Lille
CNRS
INRA
ENSCL
CNRS
INRA
ENSCL
Collections :
Équipe(s) de recherche :
Plasticité
Plasticité
Plasticité
Date de dépôt :
2021-01-19T09:19:49Z
2021-01-19T11:31:29Z
2021-01-19T13:26:57Z
2021-01-19T11:31:29Z
2021-01-19T13:26:57Z
Fichiers
- Castelnau-et-al(2020)WadsleyiteAgregateMultiscale.pdf
- Version éditeur
- Accès libre
- Accéder au document