In-situ forming implants for the treatment ...
Type de document :
Article dans une revue scientifique: Article original
PMID :
URL permanente :
Titre :
In-situ forming implants for the treatment of periodontal diseases: simultaneous controlled release of an antiseptic and an anti-inflammatory drug
Auteur(s) :
Lizambard, Martin [Auteur]
Médicaments et biomatériaux à libération contrôlée: mécanismes et optimisation - Advanced Drug Delivery Systems - U 1008 [MBLC - ADDS]
Menu, T. [Auteur]
Médicaments et biomatériaux à libération contrôlée: mécanismes et optimisation - Advanced Drug Delivery Systems - U 1008 [MBLC - ADDS]
Fossart, Martin [Auteur]
Nanomédecine Régénérative [NanoRegMed]
Advanced Drug Delivery Systems (ADDS) - U1008
Bassand, Celine [Auteur]
Médicaments et biomatériaux à libération contrôlée: mécanismes et optimisation - Advanced Drug Delivery Systems - U 1008 [MBLC - ADDS]
Advanced Drug Delivery Systems (ADDS) - U1008
Agossa, Kevimy [Auteur]
Advanced Drug Delivery Systems (ADDS) - U1008
Huck, Olivier [Auteur]
Nanomédecine Régénérative [NanoRegMed]
Neut, Christel [Auteur]
Institut de Recherche Translationnelle sur l'Inflammation (INFINITE) - U1286
Institut de Recherche Translationnelle sur l'Inflammation (INFINITE) - U1286
498252|||Lille Inflammation Research International Center - U 995 [LIRIC] (OLD)
Siepmann, Florence [Auteur]
Médicaments et biomatériaux à libération contrôlée: mécanismes et optimisation - Advanced Drug Delivery Systems - U 1008 [MBLC - ADDS]
Advanced Drug Delivery Systems (ADDS) - U1008
Médicaments et biomatériaux à libération contrôlée: mécanismes et optimisation - Advanced Drug Delivery Systems - U 1008 [MBLC - ADDS]
Menu, T. [Auteur]
Médicaments et biomatériaux à libération contrôlée: mécanismes et optimisation - Advanced Drug Delivery Systems - U 1008 [MBLC - ADDS]
Fossart, Martin [Auteur]
Nanomédecine Régénérative [NanoRegMed]
Advanced Drug Delivery Systems (ADDS) - U1008
Bassand, Celine [Auteur]
Médicaments et biomatériaux à libération contrôlée: mécanismes et optimisation - Advanced Drug Delivery Systems - U 1008 [MBLC - ADDS]
Advanced Drug Delivery Systems (ADDS) - U1008
Agossa, Kevimy [Auteur]

Advanced Drug Delivery Systems (ADDS) - U1008
Huck, Olivier [Auteur]
Nanomédecine Régénérative [NanoRegMed]
Neut, Christel [Auteur]

Institut de Recherche Translationnelle sur l'Inflammation (INFINITE) - U1286
Institut de Recherche Translationnelle sur l'Inflammation (INFINITE) - U1286
498252|||Lille Inflammation Research International Center - U 995 [LIRIC] (OLD)
Siepmann, Florence [Auteur]

Médicaments et biomatériaux à libération contrôlée: mécanismes et optimisation - Advanced Drug Delivery Systems - U 1008 [MBLC - ADDS]
Advanced Drug Delivery Systems (ADDS) - U1008
Titre de la revue :
International Journal of Pharmaceutics
Nom court de la revue :
Int J Pharm
Numéro :
572
Pagination :
118833
Date de publication :
2019-11-09
ISSN :
1873-3476
Mot(s)-clé(s) :
Periodontitis
PLGA
Ibuprofen
In-situ forming implants
Chlorhexidine
PLGA
Ibuprofen
In-situ forming implants
Chlorhexidine
Discipline(s) HAL :
Sciences du Vivant [q-bio]
Résumé en anglais : [en]
Different types of in-situ forming implants based on poly(lactic-co-glycolic acid) (PLGA) for the controlled dual release of an antiseptic drug (chlorhexidine) and an anti-inflammatory drug (ibuprofen) were prepared and ...
Lire la suite >Different types of in-situ forming implants based on poly(lactic-co-glycolic acid) (PLGA) for the controlled dual release of an antiseptic drug (chlorhexidine) and an anti-inflammatory drug (ibuprofen) were prepared and thoroughly characterized in vitro. N-methyl-pyrrolidone (NMP) was used as water-miscible solvent, acetyltributyl citrate (ATBC) as plasticizer and hydroxypropyl methylcellulose (HPMC) was added to enhance the implants' stickiness/bioadhesion upon formation within the periodontal pocket. Different drug forms exhibiting substantially different solubilities were used: chlorhexidine dihydrochloride and digluconate as well as ibuprofen free acid and lysinate. The initial drug loadings were varied from 1.5 to 16.1%. In vitro drug release, dynamic changes in the pH of the surrounding bulk fluid and in the systems' wet mass as well as polymer degradation were monitored. Importantly, the release of both drugs, chlorhexidine and ibuprofen, could effectively be controlled simultaneously during several weeks. Interestingly, the tremendous differences in the drug forms' solubilities (e.g., factor >5000) did not translate into major differences in the resulting release kinetics. In the case of ibuprofen, this can likely (at least in part) be attributed to significant drug-polymer interactions (ibuprofen acts as a plasticizer for PLGA). In the case of chlorhexidine, the release of the much less soluble dihydrochloride was even faster compared to the more soluble digluconate (when combined with ibuprofen free acid). In the case of ibuprofen, at higher initial drug loadings also limited solubility effects within the implants seem to play a role, in contrast to chlorhexidine. In the latter case, instead, increased system porosity effects likely dominate at higher drug loadings.Lire moins >
Lire la suite >Different types of in-situ forming implants based on poly(lactic-co-glycolic acid) (PLGA) for the controlled dual release of an antiseptic drug (chlorhexidine) and an anti-inflammatory drug (ibuprofen) were prepared and thoroughly characterized in vitro. N-methyl-pyrrolidone (NMP) was used as water-miscible solvent, acetyltributyl citrate (ATBC) as plasticizer and hydroxypropyl methylcellulose (HPMC) was added to enhance the implants' stickiness/bioadhesion upon formation within the periodontal pocket. Different drug forms exhibiting substantially different solubilities were used: chlorhexidine dihydrochloride and digluconate as well as ibuprofen free acid and lysinate. The initial drug loadings were varied from 1.5 to 16.1%. In vitro drug release, dynamic changes in the pH of the surrounding bulk fluid and in the systems' wet mass as well as polymer degradation were monitored. Importantly, the release of both drugs, chlorhexidine and ibuprofen, could effectively be controlled simultaneously during several weeks. Interestingly, the tremendous differences in the drug forms' solubilities (e.g., factor >5000) did not translate into major differences in the resulting release kinetics. In the case of ibuprofen, this can likely (at least in part) be attributed to significant drug-polymer interactions (ibuprofen acts as a plasticizer for PLGA). In the case of chlorhexidine, the release of the much less soluble dihydrochloride was even faster compared to the more soluble digluconate (when combined with ibuprofen free acid). In the case of ibuprofen, at higher initial drug loadings also limited solubility effects within the implants seem to play a role, in contrast to chlorhexidine. In the latter case, instead, increased system porosity effects likely dominate at higher drug loadings.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Collections :
Date de dépôt :
2021-01-20T15:59:18Z
2024-02-23T09:52:18Z
2024-02-23T09:52:18Z