In-situ studies of olivine-wadsleyite ...
Type de document :
Autre communication scientifique (congrès sans actes - poster - séminaire...): Communication dans un congrès sans actes
URL permanente :
Titre :
In-situ studies of olivine-wadsleyite transformation and related microstructures between 12 to 22 GPa and 1500 to 1700 K
Auteur(s) :
Ledoux, Estelle [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Chantel, Julien [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Hilairet, Nadege [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Svitlyk, Volodymyr [Auteur]
Byka, Maxime [Auteur]
Bykova, Elena [Auteur]
Aprilis, Georges [Auteur]
Fadel, Alexandre [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Merkel, Sébastien [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Chantel, Julien [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Hilairet, Nadege [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Svitlyk, Volodymyr [Auteur]
Byka, Maxime [Auteur]
Bykova, Elena [Auteur]
Aprilis, Georges [Auteur]
Fadel, Alexandre [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Merkel, Sébastien [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Titre de la manifestation scientifique :
17th International Symposium on Experimental Mineralogy, Petrology and Geochemistry (EMPG)
Ville :
Online
Pays :
Allemagne
Date de début de la manifestation scientifique :
2021-03-01
Discipline(s) HAL :
Physique [physics]/Physique [physics]/Géophysique [physics.geo-ph]
Planète et Univers [physics]/Sciences de la Terre
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Planète et Univers [physics]/Sciences de la Terre
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Résumé en anglais : [en]
The 410 km depth seismic discontinuity in the Earth is attributed to the transformation from olivine to its high pressure polymorph, wadsleyite (Ringwood, 1969). This phase transformation can be martensitic-like, i.e. with ...
Lire la suite >The 410 km depth seismic discontinuity in the Earth is attributed to the transformation from olivine to its high pressure polymorph, wadsleyite (Ringwood, 1969). This phase transformation can be martensitic-like, i.e. with a crystallographic orientation relationship between the parent crystal and the transformed crystal, but not in all cases (Smyth et al., 2012). In a martensitic-like phase transformation wadsleyite inherits a lattice preferred orientation (LPO) from the starting olivine. Hence, a LPO in olivine will be inherited by wadsleyite and could give rise to seismic anisotropy to the mantle transition zone. However, in the case of a non martensitic-like transformation, no trace of the upper mantle olivine LPO will be preserved by the newly-formed wadsleyite. In order to determine which scenario applies at the conditions of the 410 km depth discontinuity, we reproduce the transformation in the laboratory. We use polycrystalline samples of pure olivine loaded in diamond anvil cells inside a pressure medium and apply combined pressure and temperature to induce the phase transformation. The evolution of the sample’s microstructure is followed using in-situ X-rays diffraction at the beamlines ID27 of the ESRF and P02 at PETRA III (DESY). Key steps of the transformation are documented by 3D-XRD data collections. Data processing of these 3D-RXD collections with the multigrain crystallography method give us information about orientations and positions of individual grains in the samples all along the experiment. Based on the orientation of these grains, we track the texture evolution during the experiments and search for evidences of a crystallographic orientation relationships between the two phases. This characterization will allow us to determine the transformation mechanism occurring at the conditions of the 410 km discontinuity and the effect of the transformation on the seismic anisotropy in the Earth’s mantle.Lire moins >
Lire la suite >The 410 km depth seismic discontinuity in the Earth is attributed to the transformation from olivine to its high pressure polymorph, wadsleyite (Ringwood, 1969). This phase transformation can be martensitic-like, i.e. with a crystallographic orientation relationship between the parent crystal and the transformed crystal, but not in all cases (Smyth et al., 2012). In a martensitic-like phase transformation wadsleyite inherits a lattice preferred orientation (LPO) from the starting olivine. Hence, a LPO in olivine will be inherited by wadsleyite and could give rise to seismic anisotropy to the mantle transition zone. However, in the case of a non martensitic-like transformation, no trace of the upper mantle olivine LPO will be preserved by the newly-formed wadsleyite. In order to determine which scenario applies at the conditions of the 410 km depth discontinuity, we reproduce the transformation in the laboratory. We use polycrystalline samples of pure olivine loaded in diamond anvil cells inside a pressure medium and apply combined pressure and temperature to induce the phase transformation. The evolution of the sample’s microstructure is followed using in-situ X-rays diffraction at the beamlines ID27 of the ESRF and P02 at PETRA III (DESY). Key steps of the transformation are documented by 3D-XRD data collections. Data processing of these 3D-RXD collections with the multigrain crystallography method give us information about orientations and positions of individual grains in the samples all along the experiment. Based on the orientation of these grains, we track the texture evolution during the experiments and search for evidences of a crystallographic orientation relationships between the two phases. This characterization will allow us to determine the transformation mechanism occurring at the conditions of the 410 km discontinuity and the effect of the transformation on the seismic anisotropy in the Earth’s mantle.Lire moins >
Langue :
Anglais
Comité de lecture :
Non
Audience :
Internationale
Projet ANR :
Établissement(s) :
Université de Lille
CNRS
INRA
ENSCL
CNRS
INRA
ENSCL
Collections :
Équipe(s) de recherche :
Matériaux Terrestres et Planétaires
Date de dépôt :
2021-03-04T12:39:05Z
2021-03-05T07:09:28Z
2021-03-05T07:09:28Z