Self-Oscillating Membranes with Polymer ...
Type de document :
Article dans une revue scientifique
URL permanente :
Titre :
Self-Oscillating Membranes with Polymer Interface Synchronized with Chemical Oscillator to Reproduce Lifelike Pulsatile Flow
Auteur(s) :
Benoit, Marianne [Auteur]
Institut Européen des membranes [IEM]
Ecole Nationale Supérieure de Chimie de Montpellier [ENSCM]
Bouyer, Denis [Auteur]
Institut Européen des membranes [IEM]
Ecole Nationale Supérieure de Chimie de Montpellier [ENSCM]
Sistat, Philippe [Auteur]
Institut Européen des membranes [IEM]
Ecole Nationale Supérieure de Chimie de Montpellier [ENSCM]
Ayral, André [Auteur]
Institut Européen des membranes [IEM]
Ecole Nationale Supérieure de Chimie de Montpellier [ENSCM]
Cot, Didier [Auteur]
Ecole Nationale Supérieure de Chimie de Montpellier [ENSCM]
Rebiere, Bertrand [Auteur]
Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier [ICGM ICMMM]
Ecole Nationale Supérieure de Chimie de Montpellier [ENSCM]
Fournier, David [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Lyskawa, Joel [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Antonelli, Claire [Auteur]
Institut Européen des membranes [IEM]
Ecole Nationale Supérieure de Chimie de Montpellier [ENSCM]
Quemener, Damien [Auteur]
Institut Européen des membranes [IEM]
Ecole Nationale Supérieure de Chimie de Montpellier [ENSCM]
Institut Européen des membranes [IEM]
Ecole Nationale Supérieure de Chimie de Montpellier [ENSCM]
Bouyer, Denis [Auteur]
Institut Européen des membranes [IEM]
Ecole Nationale Supérieure de Chimie de Montpellier [ENSCM]
Sistat, Philippe [Auteur]
Institut Européen des membranes [IEM]
Ecole Nationale Supérieure de Chimie de Montpellier [ENSCM]
Ayral, André [Auteur]
Institut Européen des membranes [IEM]
Ecole Nationale Supérieure de Chimie de Montpellier [ENSCM]
Cot, Didier [Auteur]
Ecole Nationale Supérieure de Chimie de Montpellier [ENSCM]
Rebiere, Bertrand [Auteur]
Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier [ICGM ICMMM]
Ecole Nationale Supérieure de Chimie de Montpellier [ENSCM]
Fournier, David [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Lyskawa, Joel [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Antonelli, Claire [Auteur]
Institut Européen des membranes [IEM]
Ecole Nationale Supérieure de Chimie de Montpellier [ENSCM]
Quemener, Damien [Auteur]
Institut Européen des membranes [IEM]
Ecole Nationale Supérieure de Chimie de Montpellier [ENSCM]
Titre de la revue :
Chemistry of Materials
Nom court de la revue :
Chem. Mater.
Numéro :
33
Pagination :
998-1005
Éditeur :
American Chemical Society (ACS)
Date de publication :
2020-12-11
Discipline(s) HAL :
Chimie/Matériaux
Résumé en anglais : [en]
Self-oscillating filtration membranes having a lifelike pulsatile flow are prepared thanks to a synchronized coupling between a chemical oscillator and a responsive membrane. Commercial alumina membranes are superficially ...
Lire la suite >Self-oscillating filtration membranes having a lifelike pulsatile flow are prepared thanks to a synchronized coupling between a chemical oscillator and a responsive membrane. Commercial alumina membranes are superficially functionalized with pH-responsive poly(methacrylic acid) (PMAA) chains synthesized by reversible addition–fragmentation chain transfer (RAFT) polymerization of MAA in the presence of a catechol-based RAFT agent. The grafting of PMAA onto alumina, mediated through catechol chemisorption, is analyzed by X-ray photoelectron spectroscopy, scanning electron microscopy combined with energy-dispersive X-ray spectroscopy, and static water contact angle. Bromate–sulfite–ferrocyanide (BSF) is used as a chemical oscillator, enabling autonomous cyclic pH modulation between 3.5 and 6.5. The pH oscillations are setup in the conditions of membrane filtration inside a filtration cell thanks to a careful study of the bifurcation diagram showing the required conditions to reach the oscillation domain. Since PMAA has a pKa around 5.8, a periodic extension–contraction of the polymer chains is obtained during membrane filtration, which leads to a synchronized change in the membrane pore size. Chemically powered autonomous pulsatile flow with an impressive permeability cycles is observed with an effective chemomechanical feedback action of the membrane pore size change on the chemical oscillator mechanism.Lire moins >
Lire la suite >Self-oscillating filtration membranes having a lifelike pulsatile flow are prepared thanks to a synchronized coupling between a chemical oscillator and a responsive membrane. Commercial alumina membranes are superficially functionalized with pH-responsive poly(methacrylic acid) (PMAA) chains synthesized by reversible addition–fragmentation chain transfer (RAFT) polymerization of MAA in the presence of a catechol-based RAFT agent. The grafting of PMAA onto alumina, mediated through catechol chemisorption, is analyzed by X-ray photoelectron spectroscopy, scanning electron microscopy combined with energy-dispersive X-ray spectroscopy, and static water contact angle. Bromate–sulfite–ferrocyanide (BSF) is used as a chemical oscillator, enabling autonomous cyclic pH modulation between 3.5 and 6.5. The pH oscillations are setup in the conditions of membrane filtration inside a filtration cell thanks to a careful study of the bifurcation diagram showing the required conditions to reach the oscillation domain. Since PMAA has a pKa around 5.8, a periodic extension–contraction of the polymer chains is obtained during membrane filtration, which leads to a synchronized change in the membrane pore size. Chemically powered autonomous pulsatile flow with an impressive permeability cycles is observed with an effective chemomechanical feedback action of the membrane pore size change on the chemical oscillator mechanism.Lire moins >
Langue :
Anglais
Audience :
Non spécifiée
Établissement(s) :
Université de Lille
CNRS
INRA
ENSCL
CNRS
INRA
ENSCL
Collections :
Date de dépôt :
2021-03-10T08:04:48Z
2021-03-12T10:26:34Z
2021-03-12T10:29:14Z
2021-03-12T10:58:13Z
2021-03-12T11:11:59Z
2021-03-12T10:26:34Z
2021-03-12T10:29:14Z
2021-03-12T10:58:13Z
2021-03-12T11:11:59Z