Calcium and copper substitution in ...
Type de document :
Article dans une revue scientifique
URL permanente :
Titre :
Calcium and copper substitution in stoichiometric and La-deficient LaFeO3 compositions: A starting point in next generation of Three-Way-Catalysts for gasoline engines
Auteur(s) :
Wu, Jianxiong [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Dacquin, Jean-Philippe [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Djelal, Nora [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Cordier, Catherine [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Unité Matériaux et Transformations (UMET) - UMR 8207
Dujardin, Christophe [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Granger, Pascal [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Dacquin, Jean-Philippe [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Djelal, Nora [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Cordier, Catherine [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Unité Matériaux et Transformations (UMET) - UMR 8207
Dujardin, Christophe [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Granger, Pascal [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Titre de la revue :
Applied Catalysis B: Environmental
Numéro :
282
Pagination :
119621
Éditeur :
Elsevier BV
Date de publication :
2021-03
ISSN :
0926-3373
Mot(s)-clé(s) en anglais :
Perovskites
Three-Way-Catalyst
La-deficient La1-xFeO3
Dual calcium copper substitution
CO and propene oxidation
Three-Way-Catalyst
La-deficient La1-xFeO3
Dual calcium copper substitution
CO and propene oxidation
Discipline(s) HAL :
Chimie/Matériaux
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Résumé en anglais : [en]
Calcium and copper substitutions, in A-site and B-site respectively, of parent stoichiometric LaFeO3 and La-deficient La0.7FeO3 perovskites led to significant improvements in the kinetics of CO and propene oxidation in ...
Lire la suite >Calcium and copper substitutions, in A-site and B-site respectively, of parent stoichiometric LaFeO3 and La-deficient La0.7FeO3 perovskites led to significant improvements in the kinetics of CO and propene oxidation in typical three-way operating conditions. La-deficient La0.7Fe1-yCuyO3 perovskites were found more prone to surface copper oxide segregation leading to more active extra-framework copper oxide species in CO oxidation. Optimal performances were obtained on La0.7Fe0.8Cu0.2O3 composition. At higher Cu content, strong copper agglomeration leads to deactivation. More stable systems were obtained on dual substituted samples thanks to calcium substitution stabilizing copper inside the perovskite lattice and slowing down subsequent surface agglomeration. Rate enhancements in propene oxidation is observed on A-site deficient La0.6CaxFe0.8Cu0.2O3 with x ≤ 0.2 but a sharp loss in rate is observed on stoichiometric La0.6Ca0.4Fe0.8Cu0.2O3 perovskite explained by a progressive shift from suprafacial to intrafacial mechanism involving in this latter case the redox Fe4+/Fe3+ couple and lattice oxygen species.Lire moins >
Lire la suite >Calcium and copper substitutions, in A-site and B-site respectively, of parent stoichiometric LaFeO3 and La-deficient La0.7FeO3 perovskites led to significant improvements in the kinetics of CO and propene oxidation in typical three-way operating conditions. La-deficient La0.7Fe1-yCuyO3 perovskites were found more prone to surface copper oxide segregation leading to more active extra-framework copper oxide species in CO oxidation. Optimal performances were obtained on La0.7Fe0.8Cu0.2O3 composition. At higher Cu content, strong copper agglomeration leads to deactivation. More stable systems were obtained on dual substituted samples thanks to calcium substitution stabilizing copper inside the perovskite lattice and slowing down subsequent surface agglomeration. Rate enhancements in propene oxidation is observed on A-site deficient La0.6CaxFe0.8Cu0.2O3 with x ≤ 0.2 but a sharp loss in rate is observed on stoichiometric La0.6Ca0.4Fe0.8Cu0.2O3 perovskite explained by a progressive shift from suprafacial to intrafacial mechanism involving in this latter case the redox Fe4+/Fe3+ couple and lattice oxygen species.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
CNRS
INRA
ENSCL
CNRS
INRA
ENSCL
Collections :
Équipe(s) de recherche :
Métallurgie Physique et Génie des Matériaux
Matériaux pour la catalyse (MATCAT)
Remédiation et matériaux catalytiques (REMCAT)
Matériaux pour la catalyse (MATCAT)
Remédiation et matériaux catalytiques (REMCAT)
Date de dépôt :
2021-04-19T11:59:17Z
2021-04-30T13:45:04Z
2021-04-30T13:45:04Z