Thermal expansion of liquid Fe-S alloy at ...
Type de document :
Article dans une revue scientifique: Article original
URL permanente :
Titre :
Thermal expansion of liquid Fe-S alloy at high pressure
Auteur(s) :
Xu, F. [Auteur]
Morard, G. [Auteur]
Guignot, N. [Auteur]
Rivoldini, A. [Auteur]
Manthilake, G. [Auteur]
Chantel, Julien [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Unité Matériaux et Transformations (UMET) - UMR 8207
Xie, L. [Auteur]
Yoneda, A. [Auteur]
King, A. [Auteur]
Boulard, E. [Auteur]
Pandolfi, S. [Auteur]
Ryerson, F.J. [Auteur]
Antonangeli, D. [Auteur]
Morard, G. [Auteur]
Guignot, N. [Auteur]
Rivoldini, A. [Auteur]
Manthilake, G. [Auteur]
Chantel, Julien [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Unité Matériaux et Transformations (UMET) - UMR 8207
Xie, L. [Auteur]
Yoneda, A. [Auteur]
King, A. [Auteur]
Boulard, E. [Auteur]
Pandolfi, S. [Auteur]
Ryerson, F.J. [Auteur]
Antonangeli, D. [Auteur]
Titre de la revue :
Earth and Planetary Science Letters
Numéro :
563
Pagination :
116884
Éditeur :
Elsevier BV
Date de publication :
2021-06-01
ISSN :
0012-821X
Mot(s)-clé(s) en anglais :
liquid iron-sulfur alloys
density
thermal expansion
high pressure and temperature
telluric planetary cores
crystallization regime
density
thermal expansion
high pressure and temperature
telluric planetary cores
crystallization regime
Discipline(s) HAL :
Chimie/Matériaux
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Physique [physics]/Physique [physics]/Géophysique [physics.geo-ph]
Physique [physics]/Astrophysique [astro-ph]
Planète et Univers [physics]/Astrophysique [astro-ph]
Planète et Univers [physics]/Sciences de la Terre
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Physique [physics]/Physique [physics]/Géophysique [physics.geo-ph]
Physique [physics]/Astrophysique [astro-ph]
Planète et Univers [physics]/Astrophysique [astro-ph]
Planète et Univers [physics]/Sciences de la Terre
Résumé en anglais : [en]
Local structure and density of liquid Fe-S alloys at high pressure have been determined in situ by combined angle and energy dispersive X-ray diffraction experiments in a multi-anvil apparatus, covering a large temperature ...
Lire la suite >Local structure and density of liquid Fe-S alloys at high pressure have been determined in situ by combined angle and energy dispersive X-ray diffraction experiments in a multi-anvil apparatus, covering a large temperature and compositional range. Precise density measurements collected for increasing temperature allowed us to directly derive the thermal expansion coefficients for liquid Fe-S alloys as a function of composition. In turn, thermal expansion has been used to refine thermodynamic models and to address the crystallization regime of telluric planetary cores by comparing the adiabatic temperature gradient and the slope of the liquidus in the Fe-FeS system. For Fe-S cores of asteroids and small planetesimals, top-down solidification is the dominant scenario as the compositional domain for which the slope of the liquidus is greater than the adiabatic gradient is limited to a narrow portion on the Fe-rich side. However, bottom-up growth of the inner core is expected for S-poor cases, with this compositional domain expanding to more S-rich compositions with increasing pressure (size of the planetary body). In particular, bottom-up crystallization cannot be excluded for the Moon and Ganymede.Lire moins >
Lire la suite >Local structure and density of liquid Fe-S alloys at high pressure have been determined in situ by combined angle and energy dispersive X-ray diffraction experiments in a multi-anvil apparatus, covering a large temperature and compositional range. Precise density measurements collected for increasing temperature allowed us to directly derive the thermal expansion coefficients for liquid Fe-S alloys as a function of composition. In turn, thermal expansion has been used to refine thermodynamic models and to address the crystallization regime of telluric planetary cores by comparing the adiabatic temperature gradient and the slope of the liquidus in the Fe-FeS system. For Fe-S cores of asteroids and small planetesimals, top-down solidification is the dominant scenario as the compositional domain for which the slope of the liquidus is greater than the adiabatic gradient is limited to a narrow portion on the Fe-rich side. However, bottom-up growth of the inner core is expected for S-poor cases, with this compositional domain expanding to more S-rich compositions with increasing pressure (size of the planetary body). In particular, bottom-up crystallization cannot be excluded for the Moon and Ganymede.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
CNRS
INRA
ENSCL
CNRS
INRA
ENSCL
Collections :
Équipe(s) de recherche :
Matériaux Terrestres et Planétaires
Date de dépôt :
2021-05-07T10:13:47Z
2021-05-17T15:06:59Z
2021-05-17T15:06:59Z