Origin of voltage decay in high-capacity ...
Document type :
Article dans une revue scientifique
DOI :
Permalink :
Title :
Origin of voltage decay in high-capacity layered oxide electrodes
Author(s) :
Sathiya, M. [Auteur]
Chimie du solide et de l'énergie [CSE]
Laboratoire réactivité et chimie des solides - UMR CNRS 7314 [LRCS]
Abakumov, A. M. [Auteur]
Electron Microscopy for Materials Science - EMAT (Antwerp, Belgium)
Foix, D. [Auteur]
Rousse, G. [Auteur]
Université Pierre et Marie Curie - Paris 6 [UPMC]
Chimie du solide et de l'énergie [CSE]
Ramesha, K. [Auteur]
Doublet, M. L. [Auteur]
Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier [ICGM ICMMM]
Vezin, Herve [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Laisa, C. P. [Auteur]
Prakash, A. S. [Auteur]
Chimie du solide et de l'énergie [CSE]
Gonbeau, D. [Auteur]
Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux [IPREM]
VanTendeloo, G. [Auteur]
Electron Microscopy for Materials Science - EMAT (Antwerp, Belgium)
Tarascon, J-M. [Auteur]
Chimie du solide et de l'énergie [CSE]
Chimie du solide et de l'énergie [CSE]
Laboratoire réactivité et chimie des solides - UMR CNRS 7314 [LRCS]
Abakumov, A. M. [Auteur]
Electron Microscopy for Materials Science - EMAT (Antwerp, Belgium)
Foix, D. [Auteur]
Rousse, G. [Auteur]
Université Pierre et Marie Curie - Paris 6 [UPMC]
Chimie du solide et de l'énergie [CSE]
Ramesha, K. [Auteur]
Doublet, M. L. [Auteur]
Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier [ICGM ICMMM]
Vezin, Herve [Auteur]

Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Laisa, C. P. [Auteur]
Prakash, A. S. [Auteur]
Chimie du solide et de l'énergie [CSE]
Gonbeau, D. [Auteur]
Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux [IPREM]
VanTendeloo, G. [Auteur]
Electron Microscopy for Materials Science - EMAT (Antwerp, Belgium)
Tarascon, J-M. [Auteur]
Chimie du solide et de l'énergie [CSE]
Journal title :
Nature Materials
Abbreviated title :
Nature Mater
Volume number :
14
Pages :
230-238
Publisher :
Springer Science and Business Media LLC
Publication date :
2014-12-01
ISSN :
1476-4660
English keyword(s) :
Batteries
HAL domain(s) :
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
English abstract : [en]
Although Li-rich layered oxides (Li1+xNiyCozMn1−x−y−zO2 > 250 mAh g−1) are attractive electrode materials providing energy densities more than 15% higher than today’s commercial Li-ion cells, they suffer from voltage decay ...
Show more >Although Li-rich layered oxides (Li1+xNiyCozMn1−x−y−zO2 > 250 mAh g−1) are attractive electrode materials providing energy densities more than 15% higher than today’s commercial Li-ion cells, they suffer from voltage decay on cycling. To elucidate the origin of this phenomenon, we employ chemical substitution in structurally related Li2RuO3 compounds. Li-rich layered Li2Ru1−yTiyO3 phases with capacities of ~240 mAh g−1 exhibit the characteristic voltage decay on cycling. A combination of transmission electron microscopy and X-ray photoelectron spectroscopy studies reveals that the migration of cations between metal layers and Li layers is an intrinsic feature of the charge–discharge process that increases the trapping of metal ions in interstitial tetrahedral sites. A correlation between these trapped ions and the voltage decay is established by expanding the study to both Li2Ru1−ySnyO3 and Li2RuO3; the slowest decay occurs for the cations with the largest ionic radii. This effect is robust, and the finding provides insights into new chemistry to be explored for developing high-capacity layered electrodes that evade voltage decay.Show less >
Show more >Although Li-rich layered oxides (Li1+xNiyCozMn1−x−y−zO2 > 250 mAh g−1) are attractive electrode materials providing energy densities more than 15% higher than today’s commercial Li-ion cells, they suffer from voltage decay on cycling. To elucidate the origin of this phenomenon, we employ chemical substitution in structurally related Li2RuO3 compounds. Li-rich layered Li2Ru1−yTiyO3 phases with capacities of ~240 mAh g−1 exhibit the characteristic voltage decay on cycling. A combination of transmission electron microscopy and X-ray photoelectron spectroscopy studies reveals that the migration of cations between metal layers and Li layers is an intrinsic feature of the charge–discharge process that increases the trapping of metal ions in interstitial tetrahedral sites. A correlation between these trapped ions and the voltage decay is established by expanding the study to both Li2Ru1−ySnyO3 and Li2RuO3; the slowest decay occurs for the cations with the largest ionic radii. This effect is robust, and the finding provides insights into new chemistry to be explored for developing high-capacity layered electrodes that evade voltage decay.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
CNRS
CNRS
Collections :
Research team(s) :
Propriétés magnéto structurales des matériaux (PMSM)
Submission date :
2021-06-17T13:49:12Z
2021-09-10T14:34:57Z
2021-09-10T14:34:57Z