Investigation of the 3D pore structure of ...
Type de document :
Communication dans un congrès avec actes
URL permanente :
Titre :
Investigation of the 3D pore structure of a natural shale - implications for mass transport
Auteur(s) :
Adler, Pierre M. [Auteur]
Milieux Environnementaux, Transferts et Interactions dans les hydrosystèmes et les Sols [METIS]
Davy, Catherine [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Marinova, Maya [Auteur]
Institut Michel Eugène Chevreul - FR 2638 [IMEC]
Institut Chevreul - FR2638
Mussi, Alexandre [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Unité Matériaux et Transformations (UMET) - UMR 8207
Milieux Environnementaux, Transferts et Interactions dans les hydrosystèmes et les Sols [METIS]
Davy, Catherine [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Marinova, Maya [Auteur]
Institut Michel Eugène Chevreul - FR 2638 [IMEC]
Institut Chevreul - FR2638
Mussi, Alexandre [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Unité Matériaux et Transformations (UMET) - UMR 8207
Éditeur(s) ou directeur(s) scientifique(s) :
McCartney, J.S.
Tomac, I.
Tomac, I.
Titre de la manifestation scientifique :
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Organisateur(s) de la manifestation scientifique :
University of California San Diego
Ville :
La Jolla
Pays :
Etats-Unis d'Amérique
Date de début de la manifestation scientifique :
2022-04-10
Titre de la revue :
E3S Web of Conferences
Nom court de la revue :
E3S Web Conf.
Éditeur :
EDP Sciences
Date de publication :
2020-11-18
ISSN :
2267-1242
Discipline(s) HAL :
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Planète et Univers [physics]/Sciences de la Terre
Planète et Univers [physics]/Sciences de la Terre
Résumé en anglais : [en]
The multiscale pore structure of a natural shale is obtained by three distinct imaging means. First, micro-tomography image data are extended to provide the spatial arrangement of the minerals and pores observable with a ...
Lire la suite >The multiscale pore structure of a natural shale is obtained by three distinct imaging means. First, micro-tomography image data are extended to provide the spatial arrangement of the minerals and pores observable with a voxel size of 700 nm (denoted here as the macroscopic scale). Second, FIB/SEM provides a 3D representation of the porous clay matrix on the so-called mesoscopic scale (10-20 nm); a connected pore network, devoid of cracks, is obtained for two samples out of five, while the pore network is connected through cracks for two other samples out of five. Third, the nanometric pore network is characterized with tomographic STEM. Using these experimental pore structure data, permeability calculations are performed by the Lattice Boltzmann Method on the nanoscale, on the mesoscale, and on the combination of the two. Upscaling is finally done (by a finite volume approach) on the larger macroscopic scale. Calculations show that, in the absence of cracks, the contribution of the pore structure at the nanoscale, on the overall permeability, is similar to that of the mesoscale. The impact of the most recent tomographic STEM measurements on the overall transport properties is discussed.Lire moins >
Lire la suite >The multiscale pore structure of a natural shale is obtained by three distinct imaging means. First, micro-tomography image data are extended to provide the spatial arrangement of the minerals and pores observable with a voxel size of 700 nm (denoted here as the macroscopic scale). Second, FIB/SEM provides a 3D representation of the porous clay matrix on the so-called mesoscopic scale (10-20 nm); a connected pore network, devoid of cracks, is obtained for two samples out of five, while the pore network is connected through cracks for two other samples out of five. Third, the nanometric pore network is characterized with tomographic STEM. Using these experimental pore structure data, permeability calculations are performed by the Lattice Boltzmann Method on the nanoscale, on the mesoscale, and on the combination of the two. Upscaling is finally done (by a finite volume approach) on the larger macroscopic scale. Calculations show that, in the absence of cracks, the contribution of the pore structure at the nanoscale, on the overall permeability, is similar to that of the mesoscale. The impact of the most recent tomographic STEM measurements on the overall transport properties is discussed.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
CNRS
INRA
ENSCL
CNRS
INRA
ENSCL
Collections :
Équipe(s) de recherche :
Plasticité
Date de dépôt :
2021-06-18T06:24:21Z
2021-06-18T08:50:29Z
2021-06-18T08:50:29Z
Fichiers
- e3sconf_icegt2020_08005.pdf
- Version éditeur
- Accès libre
- Accéder au document