A decentralized framework for biostatistics ...
Document type :
Article dans une revue scientifique: Article original
DOI :
PMID :
Permalink :
Title :
A decentralized framework for biostatistics and privacy concerns
Author(s) :
Mangold, Paul [Auteur]
Machine Learning in Information Networks [MAGNET]
Evaluation des technologies de santé et des pratiques médicales - ULR 2694 [METRICS]
Centre Hospitalier Régional Universitaire [CHU Lille] [CHRU Lille]
École normale supérieure de Lyon [ENS de Lyon]
Moussa, Mouhamed [Auteur]
Récepteurs nucléaires, Maladies Cardiovasculaires et Diabète (EGID) - U1011
Centre Hospitalier Régional Universitaire [CHU Lille] [CHRU Lille]
Récepteurs nucléaires, Maladies Cardiovasculaires et Diabète (EGID) - U1011
Sobanski, Vincent [Auteur]
Centre Hospitalier Régional Universitaire [CHU Lille] [CHRU Lille]
Ficheur, Gregoire [Auteur]
METRICS : Evaluation des technologies de santé et des pratiques médicales - ULR 2694
Centre Hospitalier Régional Universitaire [CHU Lille] [CHRU Lille]
Andrey, Paul [Auteur]
Centre Hospitalier Régional Universitaire [CHU Lille] [CHRU Lille]
Lamer, Antoine [Auteur]
METRICS : Evaluation des technologies de santé et des pratiques médicales - ULR 2694
Machine Learning in Information Networks [MAGNET]
Evaluation des technologies de santé et des pratiques médicales - ULR 2694 [METRICS]
Centre Hospitalier Régional Universitaire [CHU Lille] [CHRU Lille]
École normale supérieure de Lyon [ENS de Lyon]
Moussa, Mouhamed [Auteur]
Récepteurs nucléaires, Maladies Cardiovasculaires et Diabète (EGID) - U1011
Centre Hospitalier Régional Universitaire [CHU Lille] [CHRU Lille]
Récepteurs nucléaires, Maladies Cardiovasculaires et Diabète (EGID) - U1011
Sobanski, Vincent [Auteur]
Centre Hospitalier Régional Universitaire [CHU Lille] [CHRU Lille]
Ficheur, Gregoire [Auteur]
METRICS : Evaluation des technologies de santé et des pratiques médicales - ULR 2694
Centre Hospitalier Régional Universitaire [CHU Lille] [CHRU Lille]
Andrey, Paul [Auteur]
Centre Hospitalier Régional Universitaire [CHU Lille] [CHRU Lille]
Lamer, Antoine [Auteur]
METRICS : Evaluation des technologies de santé et des pratiques médicales - ULR 2694
Journal title :
Studies in Health Technology and Informatics
Abbreviated title :
Stud Health Technol Inform
Volume number :
275
Pages :
137-141
Publication date :
2020-11-23
ISSN :
1879-8365
HAL domain(s) :
Sciences du Vivant [q-bio]
English abstract : [en]
Biostatistics and machine learning have been the cornerstone of a variety of recent developments in medicine. In order to gather large enough datasets, it is often necessary to set up multi-centric studies; yet, centralization ...
Show more >Biostatistics and machine learning have been the cornerstone of a variety of recent developments in medicine. In order to gather large enough datasets, it is often necessary to set up multi-centric studies; yet, centralization of measurements can be difficult, either for practical, legal or ethical reasons. As an alternative, federated learning enables leveraging multiple centers' data without actually collating them. While existing works generally require a center to act as a leader and coordinate computations, we propose a fully decentralized framework where each center plays the same role. In this paper, we apply this framework to logistic regression, including confidence intervals computation. We test our algorithm on two distinct clinical datasets split among different centers, and show that it matches results from the centralized framework. In addition, we discuss possible privacy leaks and potential protection mechanisms, paving the way towards further research.Show less >
Show more >Biostatistics and machine learning have been the cornerstone of a variety of recent developments in medicine. In order to gather large enough datasets, it is often necessary to set up multi-centric studies; yet, centralization of measurements can be difficult, either for practical, legal or ethical reasons. As an alternative, federated learning enables leveraging multiple centers' data without actually collating them. While existing works generally require a center to act as a leader and coordinate computations, we propose a fully decentralized framework where each center plays the same role. In this paper, we apply this framework to logistic regression, including confidence intervals computation. We test our algorithm on two distinct clinical datasets split among different centers, and show that it matches results from the centralized framework. In addition, we discuss possible privacy leaks and potential protection mechanisms, paving the way towards further research.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
CHU Lille
Inserm
Institut Pasteur de Lille
Université de Lille
Inserm
Institut Pasteur de Lille
Université de Lille
Collections :
Submission date :
2021-07-06T12:45:59Z
2024-01-29T09:05:20Z
2024-01-29T09:05:20Z
Files
- SHTI-275-SHTI200710.pdf
- Non spécifié
- Open access
- Access the document
Except where otherwise noted, this item's license is described as Attribution-NonCommercial 3.0 United States