Importance of buffer configuration in GaN ...
Type de document :
Autre communication scientifique (congrès sans actes - poster - séminaire...): Communication dans un congrès avec actes
Titre :
Importance of buffer configuration in GaN HEMTs for high microwave performance and robustness
Auteur(s) :
Pécheux, Romain [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Kabouche, Riad [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Dogmus, Ezgi [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Linge, Astrid [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Okada, Etienne [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Zegaoui, Malek [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Medjdoub, Farid [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Kabouche, Riad [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Dogmus, Ezgi [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Linge, Astrid [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Okada, Etienne [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Zegaoui, Malek [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Medjdoub, Farid [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Titre de la manifestation scientifique :
ESSDERC 2017 - 47th IEEE European Solid-State Device Research Conference (ESSDERC)
Ville :
Leuven
Pays :
Belgique
Date de début de la manifestation scientifique :
2017-09-11
Éditeur :
IEEE
Mot(s)-clé(s) en anglais :
double heterostructure field effect transistor (DHFET)
GaN
high electron mobility transistors (HEMTs)
output power density and power added efficiency (PAE)
GaN
high electron mobility transistors (HEMTs)
output power density and power added efficiency (PAE)
Discipline(s) HAL :
Sciences de l'ingénieur [physics]
Résumé en anglais : [en]
We report on a comparison of the ultrathin (sub-10 nm barrier thickness) AlN/GaN heterostructure using two types of buffer layers: 1) carbon doped GaN high electron mobility transistors (HEMTs) and 2) double heterostructure ...
Lire la suite >We report on a comparison of the ultrathin (sub-10 nm barrier thickness) AlN/GaN heterostructure using two types of buffer layers: 1) carbon doped GaN high electron mobility transistors (HEMTs) and 2) double heterostructure field effect transistor (DHFET). It is observed that the carbon doped HEMT structure shows better electrical characteristics, with a maximum drain current density Id of 1.3 A/mm, a transconductance Gm of 500 mS/mm and a maximum oscillation frequency fmax of 234 GHz while using a gate length of 220 nm. The low trapping effects together with high frequency performance and excellent electron confinement under high bias enabled to achieve a state-of-the-art combination at 18 GHz of output power density (Pout > 6 W/mm) and power added efficiency (PAE) close to 40% at Vds as high as 30V. At 40 GHz, a PAE above 35% is still observed in spite of the rather large gate length. A key feature is the low gate leakage current of only few tenths of μA/mm that remains stable after many load-pull sweeps at various frequency in the case of carbon doped HEMT, which is attributed to a significant reduction of the self-heating as compared to the DHFET.Lire moins >
Lire la suite >We report on a comparison of the ultrathin (sub-10 nm barrier thickness) AlN/GaN heterostructure using two types of buffer layers: 1) carbon doped GaN high electron mobility transistors (HEMTs) and 2) double heterostructure field effect transistor (DHFET). It is observed that the carbon doped HEMT structure shows better electrical characteristics, with a maximum drain current density Id of 1.3 A/mm, a transconductance Gm of 500 mS/mm and a maximum oscillation frequency fmax of 234 GHz while using a gate length of 220 nm. The low trapping effects together with high frequency performance and excellent electron confinement under high bias enabled to achieve a state-of-the-art combination at 18 GHz of output power density (Pout > 6 W/mm) and power added efficiency (PAE) close to 40% at Vds as high as 30V. At 40 GHz, a PAE above 35% is still observed in spite of the rather large gate length. A key feature is the low gate leakage current of only few tenths of μA/mm that remains stable after many load-pull sweeps at various frequency in the case of carbon doped HEMT, which is attributed to a significant reduction of the self-heating as compared to the DHFET.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Source :