3D Patterning of Si by Contact Etching ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
Titre :
3D Patterning of Si by Contact Etching With Nanoporous Metals
Auteur(s) :
Bastide, Stéphane [Auteur]
Institut de Chimie et des Matériaux Paris-Est [ICMPE]
Torralba, Encarnacion [Auteur]
Institut de Chimie et des Matériaux Paris-Est [ICMPE]
Halbwax, Mathieu [Auteur]
Optoélectronique - IEMN [OPTO - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Le Gall, Sylvain [Auteur]
Laboratoire Génie électrique et électronique de Paris [GeePs]
Mpogui, Elias [Auteur]
Institut de Chimie et des Matériaux Paris-Est [ICMPE]
Cachet-Vivier, Christine [Auteur]
Institut de Chimie et des Matériaux Paris-Est [ICMPE]
Magnin, Vincent [Auteur]
Optoélectronique - IEMN [OPTO - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Harari, Joseph [Auteur]
Optoélectronique - IEMN [OPTO - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Yarekha, Dmytro [Auteur]
Centrale de Micro Nano Fabrication - IEMN [CMNF - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Vilcot, Jean-Pierre [Auteur]
Optoélectronique - IEMN [OPTO - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Institut de Chimie et des Matériaux Paris-Est [ICMPE]
Torralba, Encarnacion [Auteur]
Institut de Chimie et des Matériaux Paris-Est [ICMPE]
Halbwax, Mathieu [Auteur]

Optoélectronique - IEMN [OPTO - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Le Gall, Sylvain [Auteur]
Laboratoire Génie électrique et électronique de Paris [GeePs]
Mpogui, Elias [Auteur]
Institut de Chimie et des Matériaux Paris-Est [ICMPE]
Cachet-Vivier, Christine [Auteur]
Institut de Chimie et des Matériaux Paris-Est [ICMPE]
Magnin, Vincent [Auteur]

Optoélectronique - IEMN [OPTO - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Harari, Joseph [Auteur]

Optoélectronique - IEMN [OPTO - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Yarekha, Dmytro [Auteur]

Centrale de Micro Nano Fabrication - IEMN [CMNF - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Vilcot, Jean-Pierre [Auteur]
Optoélectronique - IEMN [OPTO - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Titre de la revue :
Frontiers in Chemistry
Pagination :
256
Éditeur :
Frontiers Media
Date de publication :
2019
Mot(s)-clé(s) en anglais :
silicon
nanoporous gold
imprinting
MACE
contact etching
patterning
nanoporous gold
imprinting
MACE
contact etching
patterning
Discipline(s) HAL :
Sciences de l'ingénieur [physics]/Micro et nanotechnologies/Microélectronique
Chimie/Matériaux
Chimie/Matériaux
Résumé en anglais : [en]
Nanoporous gold and platinum electrodes are used to pattern n-type silicon by contact etching at the macroscopic scale. This type of electrode has the advantage of forming nanocontacts between silicon, the metal and the ...
Lire la suite >Nanoporous gold and platinum electrodes are used to pattern n-type silicon by contact etching at the macroscopic scale. This type of electrode has the advantage of forming nanocontacts between silicon, the metal and the electrolyte as in classical metal assisted chemical etching while ensuring electrolyte transport to and from the interface through the electrode. Nanoporous gold electrodes with two types of nanostructures, fine and coarse (average ligament widths of ∼30 and 100 nm, respectively) have been elaborated and tested. Patterns consisting in networks of square-based pyramids (10 ×10 µm 2 base × 7 µm height) and U-shaped lines (2, 5, and 10 µm width × 10 µm height × 4 µm interspacing) are imprinted by both electrochemical and chemical (HF-H 2 O 2) contact etching. A complete pattern transfer of pyramids is achieved with coarse nanoporous gold in both contact etching modes, at a rate of ∼0.35 µm min −1. Under the same etching conditions, U-shaped line were only partially imprinted. The surface state after imprinting presents various defects such as craters, pores or porous silicon. Small walls are sometimes obtained due to imprinting of the details of the coarse gold nanostructure. We establish that np-Au electrodes can be turned into "np-Pt" electrodes by simply sputtering a thin platinum layer (5 nm) on the etching (catalytic) side of the electrode. Imprinting with np Au/Pt slightly improves the pattern transfer resolution. 2D numerical simulations of the valence band modulation at the Au/Si/electrolyte interfaces are carried out to explain the localized aspect of contact etching of n-type silicon with gold and platinum and the different surface state obtained after patterning. They show that n-type silicon in contact with gold or platinum is in inversion regime, with holes under the metal (within 3 nm). Etching under moderate anodic polarization corresponds to a quasi 2D hole transfer over a few nanometers in the inversion layer between adjacent metal and electrolyte contacts and is therefore very localized around metal contacts.Lire moins >
Lire la suite >Nanoporous gold and platinum electrodes are used to pattern n-type silicon by contact etching at the macroscopic scale. This type of electrode has the advantage of forming nanocontacts between silicon, the metal and the electrolyte as in classical metal assisted chemical etching while ensuring electrolyte transport to and from the interface through the electrode. Nanoporous gold electrodes with two types of nanostructures, fine and coarse (average ligament widths of ∼30 and 100 nm, respectively) have been elaborated and tested. Patterns consisting in networks of square-based pyramids (10 ×10 µm 2 base × 7 µm height) and U-shaped lines (2, 5, and 10 µm width × 10 µm height × 4 µm interspacing) are imprinted by both electrochemical and chemical (HF-H 2 O 2) contact etching. A complete pattern transfer of pyramids is achieved with coarse nanoporous gold in both contact etching modes, at a rate of ∼0.35 µm min −1. Under the same etching conditions, U-shaped line were only partially imprinted. The surface state after imprinting presents various defects such as craters, pores or porous silicon. Small walls are sometimes obtained due to imprinting of the details of the coarse gold nanostructure. We establish that np-Au electrodes can be turned into "np-Pt" electrodes by simply sputtering a thin platinum layer (5 nm) on the etching (catalytic) side of the electrode. Imprinting with np Au/Pt slightly improves the pattern transfer resolution. 2D numerical simulations of the valence band modulation at the Au/Si/electrolyte interfaces are carried out to explain the localized aspect of contact etching of n-type silicon with gold and platinum and the different surface state obtained after patterning. They show that n-type silicon in contact with gold or platinum is in inversion regime, with holes under the metal (within 3 nm). Etching under moderate anodic polarization corresponds to a quasi 2D hole transfer over a few nanometers in the inversion layer between adjacent metal and electrolyte contacts and is therefore very localized around metal contacts.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Projet ANR :
Source :
Fichiers
- https://hal.archives-ouvertes.fr/hal-02409484/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-02409484/file/Suppl.Materials%20Frontiers%20Chem.pdf
- Accès libre
- Accéder au document
- https://www.frontiersin.org/articles/10.3389/fchem.2019.00256/pdf
- Accès libre
- Accéder au document
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6494945
- Accès libre
- Accéder au document
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6494945
- Accès libre
- Accéder au document
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6494945
- Accès libre
- Accéder au document
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6494945
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-02409484/document
- Accès libre
- Accéder au document
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6494945
- Accès libre
- Accéder au document
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6494945
- Accès libre
- Accéder au document
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6494945
- Accès libre
- Accéder au document
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6494945
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- fchem-07-00256.pdf
- Accès libre
- Accéder au document
- Suppl.Materials%20Frontiers%20Chem.pdf
- Accès libre
- Accéder au document
- PMC6494945
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- fchem-07-00256.pdf
- Accès libre
- Accéder au document
- Suppl.Materials%20Frontiers%20Chem.pdf
- Accès libre
- Accéder au document