Migrability of PVC plasticizers from medical ...
Document type :
Article dans une revue scientifique
PMID :
Permalink :
Title :
Migrability of PVC plasticizers from medical devices into a simulant of infused solutions
Author(s) :
Bernard, L. [Auteur]
Cueff, R. [Auteur]
Breysse, C. [Auteur]
Decaudin, Bertrand [Auteur]
Groupe de Recherche sur les formes Injectables et les Technologies Associées - ULR 7365 [GRITA]
Sautou, V. [Auteur]
Cueff, R. [Auteur]
Breysse, C. [Auteur]
Decaudin, Bertrand [Auteur]

Groupe de Recherche sur les formes Injectables et les Technologies Associées - ULR 7365 [GRITA]
Sautou, V. [Auteur]
Journal title :
International journal of pharmaceutics
Abbreviated title :
Int. J. Pharm.
Volume number :
485
Pages :
341-347
Publication date :
2015
HAL domain(s) :
Sciences du Vivant [q-bio]
French abstract :
Medical devices (MD) for infusion and artificial nutrition are essentially made of plasticized PVC. The plasticizers in the PVC matrix can leach out into the infused solutions and may enter into contact with the patients. ...
Show more >Medical devices (MD) for infusion and artificial nutrition are essentially made of plasticized PVC. The plasticizers in the PVC matrix can leach out into the infused solutions and may enter into contact with the patients. In order to assess the risk of patient exposure to these plasticizers we evaluated the migration performance of DEHP, DEHT, DINCH, and TOTM using a model adapted to the clinical use of the MDs. Each PVC tubing sample was immersed in a simulant consisting of a mixture of ethanol/water (50/50v/v) at 40°C and migration tests were carried out after 24h, 72h, and 10 days.DEHP had the highest migration ability, which increased over time. The amount of TOTM released was more than 20 times less than that of DEHP, which makes it an interesting alternative. DEHT is also promising, with a migration level three times smaller than DEHP. However, the migration ability of DINCH was similar to DEHP, with the released amounts equaling 1/8th of the initial amount in the tubing after 24h of contact. Taking into account the available toxicological data, TOTM and DEHT appear to be of particular interest. However, these data should be supplemented and correlated with clinical and toxicological studies on plasticizers and their metabolites.Show less >
Show more >Medical devices (MD) for infusion and artificial nutrition are essentially made of plasticized PVC. The plasticizers in the PVC matrix can leach out into the infused solutions and may enter into contact with the patients. In order to assess the risk of patient exposure to these plasticizers we evaluated the migration performance of DEHP, DEHT, DINCH, and TOTM using a model adapted to the clinical use of the MDs. Each PVC tubing sample was immersed in a simulant consisting of a mixture of ethanol/water (50/50v/v) at 40°C and migration tests were carried out after 24h, 72h, and 10 days.DEHP had the highest migration ability, which increased over time. The amount of TOTM released was more than 20 times less than that of DEHP, which makes it an interesting alternative. DEHT is also promising, with a migration level three times smaller than DEHP. However, the migration ability of DINCH was similar to DEHP, with the released amounts equaling 1/8th of the initial amount in the tubing after 24h of contact. Taking into account the available toxicological data, TOTM and DEHT appear to be of particular interest. However, these data should be supplemented and correlated with clinical and toxicological studies on plasticizers and their metabolites.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
CHU Lille
CHU Lille
Collections :
Research team(s) :
Innovation/évaluation des dispositifs médicaux de perfusion
Submission date :
2019-02-26T17:15:45Z