Physical mechanisms involved in the formation ...
Document type :
Compte-rendu et recension critique d'ouvrage
DOI :
Title :
Physical mechanisms involved in the formation and operation of memory devices based on a monolayer of gold nanoparticles-polythiophene hybrid materials
Author(s) :
Zhang, Tianchen [Auteur]
Nanostructures, nanoComponents & Molecules - IEMN [NCM - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Guérin, David [Auteur]
Centrale de Micro Nano Fabrication - IEMN [CMNF - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Alibart, Fabien [Auteur]
Nanostructures, nanoComponents & Molecules - IEMN [NCM - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Troadec, David [Auteur]
Centrale de Micro Nano Fabrication - IEMN [CMNF - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Hourlier, Djamila [Auteur]
EPItaxie et PHYsique des hétérostructures - IEMN [EPIPHY - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Patriarche, G. [Auteur]
Centre de Nanosciences et de Nanotechnologies [C2N]
Yassin, A. [Auteur]
MOLTECH-Anjou
Ocafrain, M. [Auteur]
MOLTECH-Anjou
Blanchard, Philippe [Auteur]
MOLTECH-Anjou
Roncali, J. [Auteur]
MOLTECH-Anjou
Vuillaume, Dominique [Auteur]
Nanostructures, nanoComponents & Molecules - IEMN [NCM - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Lmimouni, Kamal [Auteur]
Nanostructures, nanoComponents & Molecules - IEMN [NCM - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Lenfant, Stephane [Auteur]
Nanostructures, nanoComponents & Molecules - IEMN [NCM - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Nanostructures, nanoComponents & Molecules - IEMN [NCM - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Guérin, David [Auteur]

Centrale de Micro Nano Fabrication - IEMN [CMNF - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Alibart, Fabien [Auteur]

Nanostructures, nanoComponents & Molecules - IEMN [NCM - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Troadec, David [Auteur]

Centrale de Micro Nano Fabrication - IEMN [CMNF - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Hourlier, Djamila [Auteur]

EPItaxie et PHYsique des hétérostructures - IEMN [EPIPHY - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Patriarche, G. [Auteur]
Centre de Nanosciences et de Nanotechnologies [C2N]
Yassin, A. [Auteur]
MOLTECH-Anjou
Ocafrain, M. [Auteur]
MOLTECH-Anjou
Blanchard, Philippe [Auteur]
MOLTECH-Anjou
Roncali, J. [Auteur]
MOLTECH-Anjou
Vuillaume, Dominique [Auteur]

Nanostructures, nanoComponents & Molecules - IEMN [NCM - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Lmimouni, Kamal [Auteur]

Nanostructures, nanoComponents & Molecules - IEMN [NCM - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Lenfant, Stephane [Auteur]

Nanostructures, nanoComponents & Molecules - IEMN [NCM - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Journal title :
Nanoscale Advances
Pages :
2718-2726
Publisher :
RSC
Publication date :
2019-05-24
ISSN :
2516-0230
HAL domain(s) :
Physique [physics]
Physique [physics]/Matière Condensée [cond-mat]
Physique [physics]/Matière Condensée [cond-mat]/Systèmes mésoscopiques et effet Hall quantique [cond-mat.mes-hall]
Sciences de l'ingénieur [physics]/Matériaux
Physique [physics]/Matière Condensée [cond-mat]
Physique [physics]/Matière Condensée [cond-mat]/Systèmes mésoscopiques et effet Hall quantique [cond-mat.mes-hall]
Sciences de l'ingénieur [physics]/Matériaux
English abstract : [en]
Understanding the physical and chemical mechanisms occurring during the forming process and operation of an organic resistive memory device is a major issue for better performances. Various mechanisms were suggested in ...
Show more >Understanding the physical and chemical mechanisms occurring during the forming process and operation of an organic resistive memory device is a major issue for better performances. Various mechanisms were suggested in vertically stacked memory structures, but the analysis remains indirect and needs destructive characterization (e.g. cross-section to access the organic layers sandwiched between electrodes). Here, we report a study on a planar, monolayer thick, hybrid nanoparticle/molecule device (10 nm gold nanoparticles embedded in an electro-generated poly(2-thienyl-3,4-(ethylenedioxy)thiophene) layer), combining, in situ, on the same device, physical (scanning electron microscope, physico-chemical (thermogravimetry and mass spectroscopy, Raman spectroscopy) and electrical (temperature dependent current-voltage) characterizations. We demonstrate that the forming process causes an increase in the gold particle size, almost 4 times larger than the starting nanoparticles, and that the organic layer undergoes a significant chemical rearrangement from a sp3 to sp2 amorphous carbon material. Temperature dependent electrical characterizations of this nonvolatile memory confirm that the charge transport mechanism in the device is consistent with a trap-filled space charge limited current in the off state, the sp2 amorphous carbon material containing many electrically active defects.Show less >
Show more >Understanding the physical and chemical mechanisms occurring during the forming process and operation of an organic resistive memory device is a major issue for better performances. Various mechanisms were suggested in vertically stacked memory structures, but the analysis remains indirect and needs destructive characterization (e.g. cross-section to access the organic layers sandwiched between electrodes). Here, we report a study on a planar, monolayer thick, hybrid nanoparticle/molecule device (10 nm gold nanoparticles embedded in an electro-generated poly(2-thienyl-3,4-(ethylenedioxy)thiophene) layer), combining, in situ, on the same device, physical (scanning electron microscope, physico-chemical (thermogravimetry and mass spectroscopy, Raman spectroscopy) and electrical (temperature dependent current-voltage) characterizations. We demonstrate that the forming process causes an increase in the gold particle size, almost 4 times larger than the starting nanoparticles, and that the organic layer undergoes a significant chemical rearrangement from a sp3 to sp2 amorphous carbon material. Temperature dependent electrical characterizations of this nonvolatile memory confirm that the charge transport mechanism in the device is consistent with a trap-filled space charge limited current in the off state, the sp2 amorphous carbon material containing many electrically active defects.Show less >
Language :
Anglais
Popular science :
Non
Source :
Files
- http://arxiv.org/pdf/1905.12719
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-02182920/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-02182920/document
- Open access
- Access the document
- document
- Open access
- Access the document
- Zhang_2019_c9na00285e.pdf
- Open access
- Access the document
- 1905.12719
- Open access
- Access the document