High performance silicon nanowires/ruthenium ...
Document type :
Article dans une revue scientifique
Title :
High performance silicon nanowires/ruthenium nanoparticles micro-supercapacitors
Author(s) :
Bencheikh, Yasmina [Auteur]
Université M'Hamed Bougara Boumerdes [UMBB]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Harnois, Maxime [Auteur]
Institut d'Électronique et des Technologies du numéRique [IETR]
Jijie, Roxana [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Addad, Ahmed [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Roussel, Pascal [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Szunerits, Sabine [Auteur]
NanoBioInterfaces - IEMN [NBI - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Hadjersi, Toufik [Auteur]
Abaidia, Seddik El Hak [Auteur]
Université M'Hamed Bougara Boumerdes [UMBB]
Boukherroub, Rabah [Auteur correspondant]
NanoBioInterfaces - IEMN [NBI - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Université M'Hamed Bougara Boumerdes [UMBB]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Harnois, Maxime [Auteur]
Institut d'Électronique et des Technologies du numéRique [IETR]
Jijie, Roxana [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Addad, Ahmed [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Roussel, Pascal [Auteur]

Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Szunerits, Sabine [Auteur]
NanoBioInterfaces - IEMN [NBI - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Hadjersi, Toufik [Auteur]
Abaidia, Seddik El Hak [Auteur]
Université M'Hamed Bougara Boumerdes [UMBB]
Boukherroub, Rabah [Auteur correspondant]
NanoBioInterfaces - IEMN [NBI - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Journal title :
Electrochimica Acta
Pages :
150-159
Publisher :
Elsevier
Publication date :
2019-07
ISSN :
0013-4686
English keyword(s) :
Silicon nanowires
Micro-supercapacitors
Ruthenium nanoparticles
Solid-state devices
Micro-supercapacitors
Ruthenium nanoparticles
Solid-state devices
HAL domain(s) :
Chimie/Autre
Sciences de l'ingénieur [physics]/Energie électrique
Sciences de l'ingénieur [physics]/Energie électrique
English abstract : [en]
The continuous increase of small electronic devices calls for small energy storage components, commonly known as micro-supercapacitors, that can ensure autonomous operation of these devices. In this work, we propose a ...
Show more >The continuous increase of small electronic devices calls for small energy storage components, commonly known as micro-supercapacitors, that can ensure autonomous operation of these devices. In this work, we propose a simple and straightforward method to achieve high energy and power densities of a silicon-based micro-supercapacitor, consisting of silicon nanowires decorated with ruthenium nanoparticles (Ru/Si NWs). The Si NWs are obtained through the common vapor-liquid-solid (VLS) growth mechanism, while a simple electroless process is used to deposit Ru nanoparticles. While silicon nanostructuration allows to increase the surface area, coating with Ru NPs introduces a pseudocapacitance necessary to attain high energy and power densities. The Ru/Si NWs micro-supercapacitor exhibits a specific capacitance of 36.25 mF cm(-2) at a current density of 1 mA cm(-2) in a neutral Na2SO4 electrolyte and a high stability over 25 000 cycles under galvanostatic charge-discharge at 1 mA cm(-2). A solid state supercapacitor is then fabricated with symmetric electrodes separated by a polyvinyl alcohol/sulfuric acid electrolyte. The device displays a specific capacitance of similar to 18 mF cm(-2) at a current density of 1 mA cm(-2) and a specific power density 0.5 mW cm(-2). This solid-state nanowire device also exhibits a good stability over 10 000 galvanostatic charge-discharge cycles.Show less >
Show more >The continuous increase of small electronic devices calls for small energy storage components, commonly known as micro-supercapacitors, that can ensure autonomous operation of these devices. In this work, we propose a simple and straightforward method to achieve high energy and power densities of a silicon-based micro-supercapacitor, consisting of silicon nanowires decorated with ruthenium nanoparticles (Ru/Si NWs). The Si NWs are obtained through the common vapor-liquid-solid (VLS) growth mechanism, while a simple electroless process is used to deposit Ru nanoparticles. While silicon nanostructuration allows to increase the surface area, coating with Ru NPs introduces a pseudocapacitance necessary to attain high energy and power densities. The Ru/Si NWs micro-supercapacitor exhibits a specific capacitance of 36.25 mF cm(-2) at a current density of 1 mA cm(-2) in a neutral Na2SO4 electrolyte and a high stability over 25 000 cycles under galvanostatic charge-discharge at 1 mA cm(-2). A solid state supercapacitor is then fabricated with symmetric electrodes separated by a polyvinyl alcohol/sulfuric acid electrolyte. The device displays a specific capacitance of similar to 18 mF cm(-2) at a current density of 1 mA cm(-2) and a specific power density 0.5 mW cm(-2). This solid-state nanowire device also exhibits a good stability over 10 000 galvanostatic charge-discharge cycles.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Source :
Files
- https://hal-univ-rennes1.archives-ouvertes.fr/hal-02149083/document
- Open access
- Access the document
- https://hal-univ-rennes1.archives-ouvertes.fr/hal-02149083/document
- Open access
- Access the document
- https://hal-univ-rennes1.archives-ouvertes.fr/hal-02149083/document
- Open access
- Access the document
- document
- Open access
- Access the document
- Bencheikh%20et%20al-2019-High%20performance%20silicon%20nanowires-ruthenium%20nanoparticles%20micro-supercapacitors.pdf
- Open access
- Access the document