Colloidal nanocrystals as LEGO® bricks for ...
Document type :
Compte-rendu et recension critique d'ouvrage
DOI :
Title :
Colloidal nanocrystals as LEGO® bricks for building electronic band structure models
Author(s) :
Tadjine, Athmane [Auteur]
Physique - IEMN [PHYSIQUE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Delerue, Christophe [Auteur correspondant]
Physique - IEMN [PHYSIQUE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Physique - IEMN [PHYSIQUE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Delerue, Christophe [Auteur correspondant]

Physique - IEMN [PHYSIQUE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Journal title :
Physical Chemistry Chemical Physics
Pages :
8177-8184
Publisher :
Royal Society of Chemistry
Publication date :
2018
ISSN :
1463-9076
HAL domain(s) :
Physique [physics]/Matière Condensée [cond-mat]
English abstract : [en]
AbstractThe synthesis of self-assembled semiconductor nanocrystal (NC) superlattices using oriented attachment recently became a flourishing research topic. This technique already produced remarkable forms of NC superlattices, ...
Show more >AbstractThe synthesis of self-assembled semiconductor nanocrystal (NC) superlattices using oriented attachment recently became a flourishing research topic. This technique already produced remarkable forms of NC superlattices, such as linear chains, mono and multilayer square lattices, and silicene-like honeycomb lattices. In the case of lead chalcogenide semiconductors where NCs are in the form of truncated nanocubes, the attachment mostly occurs via (100) facets. In this work, we show that all these structures can be seen as sub-structures of a simple cubic lattice. From this, we investigate a rich variety of one-dimensional or two-dimensional superlattices that could be built as few lines or few layers taken from the same cubic system following different crystallographic orientations. Each NC can be therefore considered as a LEGO® brick, and any superlattice can be obtained from another one by rearranging the bricks. Moreover, we show that this concept of LEGO® bricks can be extended to the calculation of the electronic band structure of the superlattices. This leads to a simple yet powerful way to build analytical Hamiltonians that present band structures in excellent agreement with more elaborate atomistic tight-binding calculations. This LEGO® concept could guide the synthesis of superlattices and LEGO® Hamiltonians should greatly simplify further studies on the (opto-)electronic properties of such structures.Show less >
Show more >AbstractThe synthesis of self-assembled semiconductor nanocrystal (NC) superlattices using oriented attachment recently became a flourishing research topic. This technique already produced remarkable forms of NC superlattices, such as linear chains, mono and multilayer square lattices, and silicene-like honeycomb lattices. In the case of lead chalcogenide semiconductors where NCs are in the form of truncated nanocubes, the attachment mostly occurs via (100) facets. In this work, we show that all these structures can be seen as sub-structures of a simple cubic lattice. From this, we investigate a rich variety of one-dimensional or two-dimensional superlattices that could be built as few lines or few layers taken from the same cubic system following different crystallographic orientations. Each NC can be therefore considered as a LEGO® brick, and any superlattice can be obtained from another one by rearranging the bricks. Moreover, we show that this concept of LEGO® bricks can be extended to the calculation of the electronic band structure of the superlattices. This leads to a simple yet powerful way to build analytical Hamiltonians that present band structures in excellent agreement with more elaborate atomistic tight-binding calculations. This LEGO® concept could guide the synthesis of superlattices and LEGO® Hamiltonians should greatly simplify further studies on the (opto-)electronic properties of such structures.Show less >
Language :
Anglais
Popular science :
Non
Source :