Hydrogen Silsesquioxane-Based Nanofluidics
Document type :
Article dans une revue scientifique
DOI :
Title :
Hydrogen Silsesquioxane-Based Nanofluidics
Author(s) :
Punniyakoti, Sathyanarayanan [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Sivakumarasamy, Ragavendran [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Vaurette, Francois [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Joseph, Pierre [Auteur]
Équipe Micro-Nanofluidique pour les sciences de la vie et de l’environnement [LAAS-MILE]
Nishiguchi, Katsuhiko [Auteur]
NTT Basic Research Laboratories [Tokio]
Fujiwara, Akira [Auteur]
NTT Basic Research Laboratories [Tokio]
Clément, Nicolas [Auteur]
NTT Basic Research Laboratories [Tokio]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Sivakumarasamy, Ragavendran [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Vaurette, Francois [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Joseph, Pierre [Auteur]
Équipe Micro-Nanofluidique pour les sciences de la vie et de l’environnement [LAAS-MILE]
Nishiguchi, Katsuhiko [Auteur]
NTT Basic Research Laboratories [Tokio]
Fujiwara, Akira [Auteur]
NTT Basic Research Laboratories [Tokio]
Clément, Nicolas [Auteur]
NTT Basic Research Laboratories [Tokio]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Journal title :
Advanced Materials Interfaces
Pages :
1601155
Publisher :
Wiley
Publication date :
2017-04
ISSN :
2196-7350
English keyword(s) :
Nanofluidics
HSQ
3D Nanofluidics
extremely slow evaporation rate
HSQ
3D Nanofluidics
extremely slow evaporation rate
HAL domain(s) :
Physique [physics]/Physique [physics]/Dynamique des Fluides [physics.flu-dyn]
Sciences de l'ingénieur [physics]/Micro et nanotechnologies/Microélectronique
Sciences de l'ingénieur [physics]/Micro et nanotechnologies/Microélectronique
English abstract : [en]
Nanofluidics show great promise for the control of small volumes and single molecules, especially for biological and energy applications. To build up more and more complex nanofluidics systems, a versatile and reproducible ...
Show more >Nanofluidics show great promise for the control of small volumes and single molecules, especially for biological and energy applications. To build up more and more complex nanofluidics systems, a versatile and reproducible fabrication technique with nanometer precision alignment is desirable. In this article, two e-beam lithography methods to fabricate nanofluidic channels based on hydrogen silsesquioxane, a high-resolution negative-tone inorganic resist, are presented. The robustness and versatility of the fabrication processes are demonstrated on silicon, glass, and flexible substrates. The high precision ability is illustrated with nanometric alignment of nanofluidic channels on gold nanoparticles and nanotransistor sensors, as well as for 3D nanofluidics prototyping. Furthermore, an unexpected extremely slow water evaporation rate (≈1 week for 300 μm long nanochannels) is noticed. This feature enables a simple and reliable manipulation of nanofluidic chips for various studies.Show less >
Show more >Nanofluidics show great promise for the control of small volumes and single molecules, especially for biological and energy applications. To build up more and more complex nanofluidics systems, a versatile and reproducible fabrication technique with nanometer precision alignment is desirable. In this article, two e-beam lithography methods to fabricate nanofluidic channels based on hydrogen silsesquioxane, a high-resolution negative-tone inorganic resist, are presented. The robustness and versatility of the fabrication processes are demonstrated on silicon, glass, and flexible substrates. The high precision ability is illustrated with nanometric alignment of nanofluidic channels on gold nanoparticles and nanotransistor sensors, as well as for 3D nanofluidics prototyping. Furthermore, an unexpected extremely slow water evaporation rate (≈1 week for 300 μm long nanochannels) is noticed. This feature enables a simple and reliable manipulation of nanofluidic chips for various studies.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Source :
Files
- https://hal.laas.fr/hal-01701361/document
- Open access
- Access the document
- https://hal.laas.fr/hal-01701361/document
- Open access
- Access the document
- https://hal.laas.fr/hal-01701361/document
- Open access
- Access the document
- document
- Open access
- Access the document
- ADVMATINTERFACES-S-16-01309.pdf
- Open access
- Access the document