An ultra-low power iterative clique-based ...
Type de document :
Communication dans un congrès avec actes
Titre :
An ultra-low power iterative clique-based neural network integrated in 65-nm CMOS
Auteur(s) :
Chollet, Paul [Auteur]
Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance [Lab-STICC]
Département Electronique [ELEC]
Larras, Benoit [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Lahuec, Cyril [Auteur]
Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance [Lab-STICC]
Département Electronique [ELEC]
Seguin, Fabrice [Auteur]
Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance [Lab-STICC]
Département Electronique [ELEC]
Arzel, Matthieu [Auteur]
Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance [Lab-STICC]
Département Electronique [ELEC]
Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance [Lab-STICC]
Département Electronique [ELEC]
Larras, Benoit [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Lahuec, Cyril [Auteur]
Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance [Lab-STICC]
Département Electronique [ELEC]
Seguin, Fabrice [Auteur]
Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance [Lab-STICC]
Département Electronique [ELEC]
Arzel, Matthieu [Auteur]
Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance [Lab-STICC]
Département Electronique [ELEC]
Titre de la manifestation scientifique :
NEWCAS 2017 : 15th IEEE International New Circuits and Systems Conference
Ville :
Strasbourg
Pays :
France
Date de début de la manifestation scientifique :
2017-06-25
Titre de l’ouvrage :
Proceedings NEWCAS 2017 : 15th IEEE International New Circuits and Systems Conference
Date de publication :
2017
Mot(s)-clé(s) en anglais :
Analogue IC design
Ultra low power
CMOS analogue integrated circuits
Neural Networks
Ultra low power
CMOS analogue integrated circuits
Neural Networks
Discipline(s) HAL :
Sciences de l'ingénieur [physics]/Electronique
Sciences de l'ingénieur [physics]/Traitement du signal et de l'image [eess.SP]
Sciences de l'ingénieur [physics]/Traitement du signal et de l'image [eess.SP]
Résumé en anglais : [en]
Clique-based neural networks are less complex than commonly used neural network models. They have a limited connectivity and are composed of simple functions. They are thus adapted to implement neuro-inspired computation ...
Lire la suite >Clique-based neural networks are less complex than commonly used neural network models. They have a limited connectivity and are composed of simple functions. They are thus adapted to implement neuro-inspired computation units operating under severe energy constraints. This paper shows an ST 65-nm CMOS ASIC implementation for a 30-neuron cliquebased neural network circuit. With a 1V power supply and 300nA unitary current, the neuron energy consumption is only 17fJ per synaptic event. The network occupies 41,820um² silicon area.Lire moins >
Lire la suite >Clique-based neural networks are less complex than commonly used neural network models. They have a limited connectivity and are composed of simple functions. They are thus adapted to implement neuro-inspired computation units operating under severe energy constraints. This paper shows an ST 65-nm CMOS ASIC implementation for a 30-neuron cliquebased neural network circuit. With a 1V power supply and 300nA unitary current, the neuron energy consumption is only 17fJ per synaptic event. The network occupies 41,820um² silicon area.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Source :