Theoretical and experimental study of a ...
Document type :
Article dans une revue scientifique: Article original
Title :
Theoretical and experimental study of a thermal damper based on a CNT/PCM composite structure for transient electronic cooling
Author(s) :
Kinkelin, Christophe [Auteur]
Centre d'Energétique et de Thermique de Lyon [CETHIL]
Lips, Stéphane [Auteur]
Centre d'Energétique et de Thermique de Lyon [CETHIL]
Soupremanien, Ulrich [Auteur]
Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux [LITEN]
Remondière, Vincent [Auteur]
Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux [LITEN]
Dijon, Jean [Auteur]
Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux [LITEN]
Poche, Hélène Le [Auteur]
Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux [LITEN]
Ollier, Emmanuel [Auteur]
Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux [LITEN]
Zegaoui, Malek [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Rolland, Nathalie [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Rolland, Paul-Alain [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Lhostis, Sandrine [Auteur]
STMicroelectronics [Crolles] [ST-CROLLES]
Descouts, Brigitte [Auteur]
STMicroelectronics [Crolles] [ST-CROLLES]
Kaplan, Yann [Auteur]
Lefèvre, Frédéric [Auteur]
Centre d'Energétique et de Thermique de Lyon [CETHIL]
Centre d'Energétique et de Thermique de Lyon [CETHIL]
Lips, Stéphane [Auteur]
Centre d'Energétique et de Thermique de Lyon [CETHIL]
Soupremanien, Ulrich [Auteur]
Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux [LITEN]
Remondière, Vincent [Auteur]
Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux [LITEN]
Dijon, Jean [Auteur]
Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux [LITEN]
Poche, Hélène Le [Auteur]
Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux [LITEN]
Ollier, Emmanuel [Auteur]
Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux [LITEN]
Zegaoui, Malek [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Rolland, Nathalie [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Rolland, Paul-Alain [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Lhostis, Sandrine [Auteur]
STMicroelectronics [Crolles] [ST-CROLLES]
Descouts, Brigitte [Auteur]
STMicroelectronics [Crolles] [ST-CROLLES]
Kaplan, Yann [Auteur]
Lefèvre, Frédéric [Auteur]
Centre d'Energétique et de Thermique de Lyon [CETHIL]
Journal title :
Energy Conversion and Management
Pages :
257-271
Publisher :
Elsevier
Publication date :
2017
ISSN :
0196-8904
English keyword(s) :
vertically aligned carbon nanotubes
Phase change material
thermal energy storage
interfacial thermal resistance
transient electronic cooling
Phase change material
thermal energy storage
interfacial thermal resistance
transient electronic cooling
HAL domain(s) :
Physique [physics]/Mécanique [physics]/Thermique [physics.class-ph]
English abstract : [en]
The present study focuses on a thermal damper that aims at smoothing the temperature peaks experienced by electronic components during transient solicitations. It consists of a silicon casing containing a densified or ...
Show more >The present study focuses on a thermal damper that aims at smoothing the temperature peaks experienced by electronic components during transient solicitations. It consists of a silicon casing containing a densified or undensified carbon nanotube (CNT) array - linking directly both sides of the system - filled with phase change material (PCM). Theoretical consideration enables to define the concept of ideal thermal damper in order to study the foreseeable performance of this kind of system. Its thermal effectiveness can be predicted by means of two non-dimensional numbers, linked to the thermal capacity of the system and to the latent heat of the PCM. A numerical model shows that the behavior of a non-ideal thermal damper can differ from that of an ideal thermal damper: it is mostly affected by the thermal resistance at the interface between the silicon and the \CNT\ and the temperature glide during the \PCM\ phase change. To complete the study, prototypes of thermal dampers are experimentally characterized, in terms of heat storage and heat conduction performance. An estimation method of the total apparent thermal capacity of the tested sample is developed in order to quantify its latent heat storage capacity. The latent energy storage density is 1.6 J cm−2 for the best sample and is observed to be preserved after 850 thermal cycles. The total thermal resistance of the thermal damper is estimated by means of a laser flash test and a simple model of the sample. Sensitivity analyses show that the main thermal resistances are located at the interfaces between silicon and CNT.Show less >
Show more >The present study focuses on a thermal damper that aims at smoothing the temperature peaks experienced by electronic components during transient solicitations. It consists of a silicon casing containing a densified or undensified carbon nanotube (CNT) array - linking directly both sides of the system - filled with phase change material (PCM). Theoretical consideration enables to define the concept of ideal thermal damper in order to study the foreseeable performance of this kind of system. Its thermal effectiveness can be predicted by means of two non-dimensional numbers, linked to the thermal capacity of the system and to the latent heat of the PCM. A numerical model shows that the behavior of a non-ideal thermal damper can differ from that of an ideal thermal damper: it is mostly affected by the thermal resistance at the interface between the silicon and the \CNT\ and the temperature glide during the \PCM\ phase change. To complete the study, prototypes of thermal dampers are experimentally characterized, in terms of heat storage and heat conduction performance. An estimation method of the total apparent thermal capacity of the tested sample is developed in order to quantify its latent heat storage capacity. The latent energy storage density is 1.6 J cm−2 for the best sample and is observed to be preserved after 850 thermal cycles. The total thermal resistance of the thermal damper is estimated by means of a laser flash test and a simple model of the sample. Sensitivity analyses show that the main thermal resistances are located at the interfaces between silicon and CNT.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
Source :
Files
- https://hal.archives-ouvertes.fr/hal-01494833/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-01494833/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-01494833/document
- Open access
- Access the document
- document
- Open access
- Access the document
- 2017-01-11_ECM_Preprint.pdf
- Open access
- Access the document
- 2017-01-11_ECM_Preprint.pdf
- Open access
- Access the document
- document
- Open access
- Access the document
- 2017-01-11_ECM_Preprint.pdf
- Open access
- Access the document