Approach-to-equilibrium molecular dynamics ...
Type de document :
Autre communication scientifique (congrès sans actes - poster - séminaire...): Communication dans un congrès avec actes
Titre :
Approach-to-equilibrium molecular dynamics for thermal conductivies and boundary conductances
Auteur(s) :
Palla, Pier Luca [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Lampin, Evelyne [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Francioso, Pierre-Arnaud [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Cleri, Fabrizio [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Lampin, Evelyne [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Francioso, Pierre-Arnaud [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Cleri, Fabrizio [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Titre de la manifestation scientifique :
European Materials Research Society Spring Meeting, E-MRS Spring 2014, Symposium D - Phonons and fluctuations in low dimensional structures
Ville :
Lille
Pays :
France
Date de début de la manifestation scientifique :
2014
Résumé en anglais : [en]
Thermal transport is simulated at the atomic scale by approach-to-equilibrium molecular dynamics simulations (AEMD) [1]. In this method, a hot and a cold regions are delimited, before the approach-to-equilibrium is simulated ...
Lire la suite >Thermal transport is simulated at the atomic scale by approach-to-equilibrium molecular dynamics simulations (AEMD) [1]. In this method, a hot and a cold regions are delimited, before the approach-to-equilibrium is simulated by releasing the thermal constraint. The temperature difference between the two regions is monitored during the approach-to-equilibrium. It proceeds by an exponential decay. The decay time is used to extract thermal properties of the system. In the case of a bulk material, the conductivity is determined thanks to the comparison with the heat equation solution. The extrapolated value for silicon modeled by Tersoff potential [2] is compared to other calculations and an excellent agreement with previous calculations [3] is obtained. AEMD is also applied to interfaces and nanoconstrictions. In these cases the decay time of the temperature difference is related to boundary conductances. The application is made for interfaces between good conductors but also for less favorable cases of interfaces between a good and a poor conductor. Even in this last configuration, the approach is shown to be sensitive enough to extract the conductance [4]. [1] E. Lampin, P. L. Palla, P.-A- Francioso and F. Cleri, J. Appl. Phys. 114, 033525 (2013) [2] J. Tersoff, Phys. Rev. B 38, 9902 (1988) [3] P. C. Howell, J. Chem. Phys. 137, 224111 (2012) [4] E. Lampin et al, Appl. Phys. Lett. 100, 131906 (2012)Lire moins >
Lire la suite >Thermal transport is simulated at the atomic scale by approach-to-equilibrium molecular dynamics simulations (AEMD) [1]. In this method, a hot and a cold regions are delimited, before the approach-to-equilibrium is simulated by releasing the thermal constraint. The temperature difference between the two regions is monitored during the approach-to-equilibrium. It proceeds by an exponential decay. The decay time is used to extract thermal properties of the system. In the case of a bulk material, the conductivity is determined thanks to the comparison with the heat equation solution. The extrapolated value for silicon modeled by Tersoff potential [2] is compared to other calculations and an excellent agreement with previous calculations [3] is obtained. AEMD is also applied to interfaces and nanoconstrictions. In these cases the decay time of the temperature difference is related to boundary conductances. The application is made for interfaces between good conductors but also for less favorable cases of interfaces between a good and a poor conductor. Even in this last configuration, the approach is shown to be sensitive enough to extract the conductance [4]. [1] E. Lampin, P. L. Palla, P.-A- Francioso and F. Cleri, J. Appl. Phys. 114, 033525 (2013) [2] J. Tersoff, Phys. Rev. B 38, 9902 (1988) [3] P. C. Howell, J. Chem. Phys. 137, 224111 (2012) [4] E. Lampin et al, Appl. Phys. Lett. 100, 131906 (2012)Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Non spécifiée
Vulgarisation :
Non
Source :