Gold-free ternary III-V antimonide nanowire ...
Type de document :
Article dans une revue scientifique
DOI :
Titre :
Gold-free ternary III-V antimonide nanowire arrays on silicon : twin-free down to the first bilayer
Auteur(s) :
Conesa-Boj, Sònia [Auteur]
Laboratoire des Matériaux Semiconducteurs / Laboratory of Semiconductor Materials [LMSC]
Kriegner, Dominik [Auteur]
Institute of Semiconductor and Solid State Physics
Han, Xiang-Lei [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Plissard, S.R. [Auteur]
Kavli Institute of Nanosciences [Delft] [KI-NANO]
Wallart, Xavier [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Stangl, Julian [Auteur]
Institute of Semiconductor and Solid State Physics
Fontcuberta I Morral, Anna [Auteur]
Laboratoire des Matériaux Semiconducteurs / Laboratory of Semiconductor Materials [LMSC]
Caroff, Philippe [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Laboratoire des Matériaux Semiconducteurs / Laboratory of Semiconductor Materials [LMSC]
Kriegner, Dominik [Auteur]
Institute of Semiconductor and Solid State Physics
Han, Xiang-Lei [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Plissard, S.R. [Auteur]
Kavli Institute of Nanosciences [Delft] [KI-NANO]
Wallart, Xavier [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Stangl, Julian [Auteur]
Institute of Semiconductor and Solid State Physics
Fontcuberta I Morral, Anna [Auteur]
Laboratoire des Matériaux Semiconducteurs / Laboratory of Semiconductor Materials [LMSC]
Caroff, Philippe [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Titre de la revue :
Nano Letters
Pagination :
326-332
Éditeur :
American Chemical Society
Date de publication :
2014
ISSN :
1530-6984
Mot(s)-clé(s) en anglais :
Nanowire
III−V
antimonide
GaAsSb
crystal structure
silicon
zinc blende
twin-free
transmission electron microscopy
energy dispersive X-ray spectroscopy
molecular beam epitaxy
X-ray diffraction
synchrotron radiation
III−V
antimonide
GaAsSb
crystal structure
silicon
zinc blende
twin-free
transmission electron microscopy
energy dispersive X-ray spectroscopy
molecular beam epitaxy
X-ray diffraction
synchrotron radiation
Discipline(s) HAL :
Sciences de l'ingénieur [physics]
Résumé en anglais : [en]
With the continued maturation of III-V nanowire research, expectations of material quality should be concomitantly raised. Ideally, III-V nanowires integrated on silicon should be entirely free of extended planar defects ...
Lire la suite >With the continued maturation of III-V nanowire research, expectations of material quality should be concomitantly raised. Ideally, III-V nanowires integrated on silicon should be entirely free of extended planar defects such as twins, stacking faults, or polytypism, position-controlled for convenient device processing, and gold-free for compatibility with standard complementary metal-oxide-semiconductor (CMOS) processing tools. Here we demonstrate large area vertical GaAsxSb1-x nanowire arrays grown on silicon (111) by molecular beam epitaxy. The nanowires' complex faceting, pure zinc blende crystal structure, and composition are mapped using characterization techniques both at the nanoscale and in large-area ensembles. We prove unambiguously that these gold-free nanowires are entirely twin-free down to the first bilayer and reveal their three-dimensional composition evolution, paving the way for novel infrared devices integrated directly on the cost-effective Si platform.Lire moins >
Lire la suite >With the continued maturation of III-V nanowire research, expectations of material quality should be concomitantly raised. Ideally, III-V nanowires integrated on silicon should be entirely free of extended planar defects such as twins, stacking faults, or polytypism, position-controlled for convenient device processing, and gold-free for compatibility with standard complementary metal-oxide-semiconductor (CMOS) processing tools. Here we demonstrate large area vertical GaAsxSb1-x nanowire arrays grown on silicon (111) by molecular beam epitaxy. The nanowires' complex faceting, pure zinc blende crystal structure, and composition are mapped using characterization techniques both at the nanoscale and in large-area ensembles. We prove unambiguously that these gold-free nanowires are entirely twin-free down to the first bilayer and reveal their three-dimensional composition evolution, paving the way for novel infrared devices integrated directly on the cost-effective Si platform.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Source :
Fichiers
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3890218/pdf
- Accès libre
- Accéder au document
- Accès libre
- Accéder au document