Micro-nanostructured silicon based ...
Document type :
Article dans une revue scientifique: Article original
Title :
Micro-nanostructured silicon based superomniphobic surfaces
Author(s) :
Phuong Nhung Nguyen, Thi [Auteur]
Institut de Recherche Interdisciplinaire [Villeneuve d'Ascq] [IRI]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Boukherroub, Rabah [Auteur]
Institut de Recherche Interdisciplinaire [Villeneuve d'Ascq] [IRI]
Thomy, Vincent [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Coffinier, Yannick [Auteur]
Institut de Recherche Interdisciplinaire [Villeneuve d'Ascq] [IRI]
Institut de Recherche Interdisciplinaire [Villeneuve d'Ascq] [IRI]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Boukherroub, Rabah [Auteur]

Institut de Recherche Interdisciplinaire [Villeneuve d'Ascq] [IRI]
Thomy, Vincent [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Coffinier, Yannick [Auteur]

Institut de Recherche Interdisciplinaire [Villeneuve d'Ascq] [IRI]
Journal title :
Journal of Colloid and Interface Science
Pages :
280-288
Publisher :
Elsevier
Publication date :
2014
ISSN :
0021-9797
HAL domain(s) :
Sciences de l'ingénieur [physics]
English abstract : [en]
We report on the fabrication of silicon nanostructured superhydrophobic and superoleophobic surfaces also called "superomniphobic" surfaces. For this purpose, silicon interfaces with different surface morphologies, single ...
Show more >We report on the fabrication of silicon nanostructured superhydrophobic and superoleophobic surfaces also called "superomniphobic" surfaces. For this purpose, silicon interfaces with different surface morphologies, single or double scale structuration, were investigated. These structured surfaces were chemically treated with perfluorodecyltrichlorosilane (PFTS), a low surface energy molecule. The morphology of the resulting surfaces was characterized using scanning electron microscopy (SEM). Their wetting properties: static contact angle (CA) and contact angle hysteresis (CAH) were investigated using liquids of various surface tensions. Despite that we found that all the different morphologies display a superhydrophobic character (CA > 150° for water) and superoleophobic behavior (CA ≈ 140° for hexadecane), values of hysteresis are strongly dependent on the liquid surface tension and surface morphology. The best surface described in this study was composed of a dual scale texturation i.e. silicon micropillars covered by silicon nanowires. Indeed, this surface displayed high static contact angles and low hysteresis for all tested liquids.Show less >
Show more >We report on the fabrication of silicon nanostructured superhydrophobic and superoleophobic surfaces also called "superomniphobic" surfaces. For this purpose, silicon interfaces with different surface morphologies, single or double scale structuration, were investigated. These structured surfaces were chemically treated with perfluorodecyltrichlorosilane (PFTS), a low surface energy molecule. The morphology of the resulting surfaces was characterized using scanning electron microscopy (SEM). Their wetting properties: static contact angle (CA) and contact angle hysteresis (CAH) were investigated using liquids of various surface tensions. Despite that we found that all the different morphologies display a superhydrophobic character (CA > 150° for water) and superoleophobic behavior (CA ≈ 140° for hexadecane), values of hysteresis are strongly dependent on the liquid surface tension and surface morphology. The best surface described in this study was composed of a dual scale texturation i.e. silicon micropillars covered by silicon nanowires. Indeed, this surface displayed high static contact angles and low hysteresis for all tested liquids.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Non spécifiée
Popular science :
Non
Source :