• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520
  • View Item
  •   LillOA Home
  • Liste des unités
  • Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A memristive nanoparticle/organic hybrid ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique
DOI :
10.1002/adfm.201101935
Title :
A memristive nanoparticle/organic hybrid synapstor for neuroinspired computing
Author(s) :
Alibart, F. [Auteur]
Pleutin, S. [Auteur]
Bichler, O. [Auteur]
Gamrat, C. [Auteur]
Serrano-Gotarredona, T. [Auteur]
Linares-Barranco, B. [Auteur]
Vuillaume, D. [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Journal title :
Advanced Functional Materials
Pages :
609-616
Publisher :
Wiley
Publication date :
2012
ISSN :
1616-301X
English keyword(s) :
Organic electronics
hybrid materials
memristor
neuromorphic device
synaptic plasticity
HAL domain(s) :
Sciences de l'ingénieur [physics]
English abstract : [en]
A large effort is devoted to the research of new computing paradigms associated to innovative nanotechnologies that should complement and/or propose alternative solutions to the classical Von Neumann/CMOS association. Among ...
Show more >
A large effort is devoted to the research of new computing paradigms associated to innovative nanotechnologies that should complement and/or propose alternative solutions to the classical Von Neumann/CMOS association. Among various propositions, Spiking Neural Network (SNN) seems a valid candidate. (i) In terms of functions, SNN using relative spike timing for information coding are deemed to be the most effective at taking inspiration from the brain to allow fast and efficient processing of information for complex tasks in recognition or classification. (ii) In terms of technology, SNN may be able to benefit the most from nanodevices, because SNN architectures are intrinsically tolerant to defective devices and performance variability. Here we demonstrate Spike-Timing-Dependent Plasticity (STDP), a basic and primordial learning function in the brain, with a new class of synapstor (synapsetransistor), called Nanoparticle Organic Memory Field Effect Transistor (NOMFET). We show that this learning function is obtained with a simple hybrid material made of the selfassembly of gold nanoparticles and organic semiconductor thin films. Beyond mimicking biological synapses, we also demonstrate how the shape of the applied spikes can tailor theSTDP learning function. Moreover, the experiments and modeling show that this synapstor is a memristive device. Finally, these synapstors are successfully coupled with a CMOS platform emulating the pre- and post-synaptic neurons, and a behavioral macro-model is developed on usual device simulator.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Non spécifiée
Popular science :
Non
Collections :
  • Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520
Source :
Harvested from HAL
Files
Thumbnail
  • http://arxiv.org/pdf/1112.3138
  • Open access
  • Access the document
Thumbnail
  • 1112.3138
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017