• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520
  • View Item
  •   LillOA Home
  • Liste des unités
  • Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Imaging Coulomb islands in a quantum Hall ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique
DOI :
10.1038/NCOMMS1038
Title :
Imaging Coulomb islands in a quantum Hall interferometer
Author(s) :
Hackens, B. [Auteur]
Dispositifs Intégrés et Circuits Electroniques Machine Learning Group [DICE - MLG]
Martins, F. [Auteur]
Dispositifs Intégrés et Circuits Electroniques Machine Learning Group [DICE - MLG]
Faniel, S. [Auteur]
Dispositifs Intégrés et Circuits Electroniques Machine Learning Group [DICE - MLG]
Dutu, C. A. [Auteur]
Dispositifs Intégrés et Circuits Electroniques Machine Learning Group [DICE - MLG]
Sellier, Hermann [Auteur]
Nano-Electronique Quantique et Spectroscopie [NEEL - QuNES]
Huant, Serge [Auteur]
Nano-Optique et Forces [NEEL - NOF]
Pala, M. [Auteur]
Institut de Microélectronique, Electromagnétisme et Photonique - Laboratoire d'Hyperfréquences et Caractérisation [IMEP-LAHC]
Desplanque, L. [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Wallart, X. [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Bayot, Vincent [Auteur]
Nano-Optique et Forces [NEEL - NOF]
Journal title :
Nature Communications
Pages :
39
Publisher :
Nature Publishing Group
Publication date :
2010-07
ISSN :
2041-1723
HAL domain(s) :
Physique [physics]/Matière Condensée [cond-mat]/Systèmes mésoscopiques et effet Hall quantique [cond-mat.mes-hall]
English abstract : [en]
In the quantum Hall regime, near integer filling factors, electrons should only be transmitted through spatially separated edge states. However, in mesoscopic systems, electronic transmission turns out to be more complex, ...
Show more >
In the quantum Hall regime, near integer filling factors, electrons should only be transmitted through spatially separated edge states. However, in mesoscopic systems, electronic transmission turns out to be more complex, giving rise to a large spectrum of magnetoresistance oscillations. To explain these observations, recent models put forward the theory that, as edge states come close to each other, electrons can hop between counterpropagating edge channels, or tunnel through Coulomb islands. Here, we use scanning gate microscopy to demonstrate the presence of QH Coulomb islands, and reveal the spatial structure of transport inside a QH interferometer. Locations of electron islands are found by modulating the tunnelling between edge states and confined electron orbits. Tuning the magnetic field, we unveil a continuous evolution of active electron islands. This allows to decrypt the complexity of high-magnetic-field magnetoresistance oscillations, and opens the way to further local-scale manipulations of QH localized states.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520
Source :
Harvested from HAL
Files
Thumbnail
  • http://arxiv.org/pdf/1010.4494
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-00709461/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-00709461/document
  • Open access
  • Access the document
Thumbnail
  • document
  • Open access
  • Access the document
Thumbnail
  • 1010.4494.pdf
  • Open access
  • Access the document
Thumbnail
  • 1010.4494
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017