[Invited paper] InSb nanowire field-effect ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
[Invited paper] InSb nanowire field-effect transistors and quantum-dot devices
Auteur(s) :
Nilsson, H.A. [Auteur]
Deng, M.T. [Auteur]
Caroff, P. [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Thelander, C. [Auteur]
Samuelson, L. [Auteur]
Wernersson, L.E. [Auteur]
Xu, H.Q. [Auteur]
Deng, M.T. [Auteur]
Caroff, P. [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Thelander, C. [Auteur]
Samuelson, L. [Auteur]
Wernersson, L.E. [Auteur]
Xu, H.Q. [Auteur]
Titre de la revue :
IEEE Journal of Selected Topics in Quantum Electronics
Pagination :
907-914
Éditeur :
Institute of Electrical and Electronics Engineers
Date de publication :
2011
ISSN :
1077-260X
Mot(s)-clé(s) en anglais :
Field-effect transistors (FETs)
indium compounds
quantum dots
semiconductor growth
single-electron transistors
indium compounds
quantum dots
semiconductor growth
single-electron transistors
Discipline(s) HAL :
Sciences de l'ingénieur [physics]
Résumé en anglais : [en]
The authors present fabrication and electrical measurements of InSb nanowire field-effect transistors (FETs) and quantum dots. The devices are made on a SiO 2 -capped Si substrate from InSb segments of InAs/InSb heterostructured ...
Lire la suite >The authors present fabrication and electrical measurements of InSb nanowire field-effect transistors (FETs) and quantum dots. The devices are made on a SiO 2 -capped Si substrate from InSb segments of InAs/InSb heterostructured nanowires, which are grown by metalorganic vapor phase epitaxy. For the FETs, both single- and dual-gate devices are fabricated. The Si substrate is employed as the back gate in both the single- and dual-gate devices, while a top metal gate is employed as a second gate in the dual-gate devices. This top gate is made either as a global gate or as a local finger gate by using a thin HfO 2 layer grown by atomic layer deposition as a gate dielectric. The measurements reveal that the fabricated devices show the desired transistor characteristics. The measurements also demonstrate the possibility of realizing ambipolar transistors using InSb nanowires. For InSb nanowire quantum dots, both contact-induced Schottky-barrier-defined devices and top-finger-gate-defined devices are fabricated, and the Si substrate is used as a gate to tune the electron number in the quantum dots. The electrical measurements of these fabricated quantum-dot devices show the Coulomb-blockade effect at 4.2 K. A Fabry-Perot-like interference effect is also observed in a Schottky-barrier-defined quantum device. The authors also discuss in a comparative way, the results of measurements for the InSb nanowire devices made by different fabrication technologies employed in this study.Lire moins >
Lire la suite >The authors present fabrication and electrical measurements of InSb nanowire field-effect transistors (FETs) and quantum dots. The devices are made on a SiO 2 -capped Si substrate from InSb segments of InAs/InSb heterostructured nanowires, which are grown by metalorganic vapor phase epitaxy. For the FETs, both single- and dual-gate devices are fabricated. The Si substrate is employed as the back gate in both the single- and dual-gate devices, while a top metal gate is employed as a second gate in the dual-gate devices. This top gate is made either as a global gate or as a local finger gate by using a thin HfO 2 layer grown by atomic layer deposition as a gate dielectric. The measurements reveal that the fabricated devices show the desired transistor characteristics. The measurements also demonstrate the possibility of realizing ambipolar transistors using InSb nanowires. For InSb nanowire quantum dots, both contact-induced Schottky-barrier-defined devices and top-finger-gate-defined devices are fabricated, and the Si substrate is used as a gate to tune the electron number in the quantum dots. The electrical measurements of these fabricated quantum-dot devices show the Coulomb-blockade effect at 4.2 K. A Fabry-Perot-like interference effect is also observed in a Schottky-barrier-defined quantum device. The authors also discuss in a comparative way, the results of measurements for the InSb nanowire devices made by different fabrication technologies employed in this study.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Source :