Ultrasonic guided waves on a periodical ...
Document type :
Article dans une revue scientifique
DOI :
Title :
Ultrasonic guided waves on a periodical grating : coupled modes in the first Brillouin zone
Author(s) :
Morvan, B. [Auteur]
Laboratoire d'acoustique ultrasonore et d'électronique [LAUE]
Hladky, Anne-Christine [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Leduc, D. [Auteur]
Laboratoire d'acoustique ultrasonore et d'électronique [LAUE]
Izbicki, J.L. [Auteur]
Laboratoire d'acoustique ultrasonore et d'électronique [LAUE]
Laboratoire d'acoustique ultrasonore et d'électronique [LAUE]
Hladky, Anne-Christine [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Leduc, D. [Auteur]
Laboratoire d'acoustique ultrasonore et d'électronique [LAUE]
Izbicki, J.L. [Auteur]
Laboratoire d'acoustique ultrasonore et d'électronique [LAUE]
Journal title :
Journal of Applied Physics
Pages :
114906
Publisher :
American Institute of Physics
Publication date :
2007
ISSN :
0021-8979
HAL domain(s) :
Sciences de l'ingénieur [physics]/Acoustique [physics.class-ph]
English abstract : [en]
The propagation of Lamb waves in a plate with an engraved periodic grating is addressed in this article. Mode conversions and reflections are analyzed. In the first part the conversion modes are explained by the existence ...
Show more >The propagation of Lamb waves in a plate with an engraved periodic grating is addressed in this article. Mode conversions and reflections are analyzed. In the first part the conversion modes are explained by the existence of a resonance condition between the Lamb-wave wavenumbers and the fundamental and harmonic spatial periods of the grating. These phenomena are experimentally and numerically highlighted for a metallic waveguide with a rectangular grating. The second part focuses on the pseudo-Lamb wave dispersion curves in a periodic waveguide. The periodicity implies that the Lamb waves dispersion curves fold back at the edge of the Brillouin zone. Several stop bands appear: classical band gaps at the boundary of the Brillouin zone and mini-stop-bands inside the Brillouin zone. For the ministop band, dispersion curves cross and a possible coupling occurs between the modes. Finally, conversions or the existence of gaps are linked with the Power Spectral Density of the grating profile.Show less >
Show more >The propagation of Lamb waves in a plate with an engraved periodic grating is addressed in this article. Mode conversions and reflections are analyzed. In the first part the conversion modes are explained by the existence of a resonance condition between the Lamb-wave wavenumbers and the fundamental and harmonic spatial periods of the grating. These phenomena are experimentally and numerically highlighted for a metallic waveguide with a rectangular grating. The second part focuses on the pseudo-Lamb wave dispersion curves in a periodic waveguide. The periodicity implies that the Lamb waves dispersion curves fold back at the edge of the Brillouin zone. Several stop bands appear: classical band gaps at the boundary of the Brillouin zone and mini-stop-bands inside the Brillouin zone. For the ministop band, dispersion curves cross and a possible coupling occurs between the modes. Finally, conversions or the existence of gaps are linked with the Power Spectral Density of the grating profile.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Non spécifiée
Popular science :
Non
Source :
Files
- https://hal.archives-ouvertes.fr/hal-00255741/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-00255741/document
- Open access
- Access the document
- document
- Open access
- Access the document
- Morvan_2007_1.2737348.pdf
- Open access
- Access the document