Detection of single DNA mismatches by force ...
Type de document :
Compte-rendu et recension critique d'ouvrage
DOI :
PMID :
Titre :
Detection of single DNA mismatches by force spectroscopy in short DNA hairpins
Auteur(s) :
Landuzzi, F. [Auteur]
Viader-Godoy, X. [Auteur]
Universitat de Barcelona [UB]
Cleri, Fabrizio [Auteur]
Physique - IEMN [PHYSIQUE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Pastor, I. [Auteur]
Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina [CIBER-BBN]
Universitat de Barcelona [UB]
Ritort, F. [Auteur correspondant]
Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina [CIBER-BBN]
Universitat de Barcelona [UB]
Viader-Godoy, X. [Auteur]
Universitat de Barcelona [UB]
Cleri, Fabrizio [Auteur]

Physique - IEMN [PHYSIQUE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Pastor, I. [Auteur]
Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina [CIBER-BBN]
Universitat de Barcelona [UB]
Ritort, F. [Auteur correspondant]
Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina [CIBER-BBN]
Universitat de Barcelona [UB]
Titre de la revue :
The Journal of Chemical Physics
Pagination :
074204, 11 pages
Éditeur :
American Institute of Physics
Date de publication :
2020-02
ISSN :
0021-9606
Mot(s)-clé(s) en anglais :
Free energy
Chemical thermodynamics
Optical trapping
Force spectroscopy
Probability theory
Steered molecular dynamics
Optical tweezer
Chemical thermodynamics
Optical trapping
Force spectroscopy
Probability theory
Steered molecular dynamics
Optical tweezer
Discipline(s) HAL :
Sciences de l'ingénieur [physics]
Résumé en anglais : [en]
Identification of defective DNA structures is a difficult task, since small differences in base-pair bonding are hidden in the local structural variability of a generally random base-pair sequence. Defects, such as base ...
Lire la suite >Identification of defective DNA structures is a difficult task, since small differences in base-pair bonding are hidden in the local structural variability of a generally random base-pair sequence. Defects, such as base mismatches, missing bases, crosslinks, and so on, occur in DNA with high frequency and must be efficiently identified and repaired to avoid dire consequences such as genetic mutations. Here, we focus on the detection of base mismatches, which is local deviations from the ideal Watson-Crick pairing rule, which may typically originate from DNA replication process, foreign chemical attack, or ionizing radiation. Experimental detection of a mismatch defect demands the ability to measure slight deviations in the free energy and molecular structure. We introduce different mismatches in short DNA hairpins (10 or 20 base pairs plus a 4-base loop) sandwiched between dsDNA handles to be used in single-molecule force spectroscopy with optical tweezers. We perform both hopping and force-pulling experiments to measure the excess free energies and deduce the characteristic kinetic signatures of the mismatch from the force-distance curves. All-atom molecular dynamics simulations lend support to the detailed interpretation of the experimental data. Such measurements, at the lowest sensitivity limits of this experimental technique, demonstrate the capability of identifying the presence of mismatches in a random complementary dsDNA sequence and provide lower bounds for the ability to distinguish different structural defects.Lire moins >
Lire la suite >Identification of defective DNA structures is a difficult task, since small differences in base-pair bonding are hidden in the local structural variability of a generally random base-pair sequence. Defects, such as base mismatches, missing bases, crosslinks, and so on, occur in DNA with high frequency and must be efficiently identified and repaired to avoid dire consequences such as genetic mutations. Here, we focus on the detection of base mismatches, which is local deviations from the ideal Watson-Crick pairing rule, which may typically originate from DNA replication process, foreign chemical attack, or ionizing radiation. Experimental detection of a mismatch defect demands the ability to measure slight deviations in the free energy and molecular structure. We introduce different mismatches in short DNA hairpins (10 or 20 base pairs plus a 4-base loop) sandwiched between dsDNA handles to be used in single-molecule force spectroscopy with optical tweezers. We perform both hopping and force-pulling experiments to measure the excess free energies and deduce the characteristic kinetic signatures of the mismatch from the force-distance curves. All-atom molecular dynamics simulations lend support to the detailed interpretation of the experimental data. Such measurements, at the lowest sensitivity limits of this experimental technique, demonstrate the capability of identifying the presence of mismatches in a random complementary dsDNA sequence and provide lower bounds for the ability to distinguish different structural defects.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Source :
Fichiers
- https://hal.archives-ouvertes.fr/hal-03321534/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-03321534/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- Landuzzi_2020_1.5139284.pdf
- Accès libre
- Accéder au document