Plasmonic layer as a localized temperature ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
Titre :
Plasmonic layer as a localized temperature control element for surface plasmonic resonance-based sensors
Auteur(s) :
Ganesan, Sivaramakrishnan [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Maricot, Sophie [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Optoélectronique - IEMN [OPTO - IEMN]
Robillard, Jean-François [Auteur]
Microélectronique Silicium - IEMN [MICROELEC SI - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Okada, Etienne [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Plateforme de Caractérisation Multi-Physiques - IEMN [PCMP - IEMN]
Bakouche, Mohamed-Taieb [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Hay, Laurent [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Vilcot, Jean-Pierre [Auteur]
Optoélectronique - IEMN [OPTO - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Maricot, Sophie [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Optoélectronique - IEMN [OPTO - IEMN]
Robillard, Jean-François [Auteur]

Microélectronique Silicium - IEMN [MICROELEC SI - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Okada, Etienne [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Plateforme de Caractérisation Multi-Physiques - IEMN [PCMP - IEMN]
Bakouche, Mohamed-Taieb [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Hay, Laurent [Auteur]

Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Vilcot, Jean-Pierre [Auteur]
Optoélectronique - IEMN [OPTO - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Titre de la revue :
Sensors
Pagination :
2035
Éditeur :
MDPI
Date de publication :
2021
ISSN :
1424-8220
Mot(s)-clé(s) en anglais :
surface plasmon resonance
plasmonic sensor
temperature control
localized heating
plasmonic sensor
temperature control
localized heating
Discipline(s) HAL :
Physique [physics]/Physique [physics]/Instrumentations et Détecteurs [physics.ins-det]
Résumé en anglais : [en]
Surface plasmon resonance (SPR) sensing is a well-established high-sensitivity, label-free and real-time detection technique for biomolecular interaction study. Its primary working principle consists of the measurement of ...
Lire la suite >Surface plasmon resonance (SPR) sensing is a well-established high-sensitivity, label-free and real-time detection technique for biomolecular interaction study. Its primary working principle consists of the measurement of the optical refractive index of the medium that is in close vicinity of the sensor surface. Bio-functionalization techniques allow biomolecular events to be located in such a way. Since optical refractive indices of any medium varies with the temperature, the place where the measurement takes place shall be within a temperature-controlled environment in order to ensure any temperature fluctuation is interpreted as a biomolecular event. Since the SPR measurement probes the sensed medium within the penetration depth of the plasmonic wave, which is less or in the order of 1 µm, we propose to use the metallic film constituting the detection surface as a localized heater aiming at controlling finely and quickly the temperature of the sensed medium. The Joule heating principle is then used and the modeling of the heater is reported as well as its validation by thermal IR imaging. Using water as a demonstration medium, SPR measurement results at different temperatures are successfully compared to the theoretical optical refractive index of water versus temperature.Lire moins >
Lire la suite >Surface plasmon resonance (SPR) sensing is a well-established high-sensitivity, label-free and real-time detection technique for biomolecular interaction study. Its primary working principle consists of the measurement of the optical refractive index of the medium that is in close vicinity of the sensor surface. Bio-functionalization techniques allow biomolecular events to be located in such a way. Since optical refractive indices of any medium varies with the temperature, the place where the measurement takes place shall be within a temperature-controlled environment in order to ensure any temperature fluctuation is interpreted as a biomolecular event. Since the SPR measurement probes the sensed medium within the penetration depth of the plasmonic wave, which is less or in the order of 1 µm, we propose to use the metallic film constituting the detection surface as a localized heater aiming at controlling finely and quickly the temperature of the sensed medium. The Joule heating principle is then used and the modeling of the heater is reported as well as its validation by thermal IR imaging. Using water as a demonstration medium, SPR measurement results at different temperatures are successfully compared to the theoretical optical refractive index of water versus temperature.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Source :
Fichiers
- https://hal.archives-ouvertes.fr/hal-03346097/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-03346097/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-03346097/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- Ganesan_sensors-21-02035-v2.pdf
- Accès libre
- Accéder au document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- Ganesan_sensors-21-02035-v2.pdf
- Accès libre
- Accéder au document