• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Laboratoire de Mécanique des Fluides de Lille Kampé de Fériet (LMFL) - UMR 9014
  • View Item
  •   LillOA Home
  • Liste des unités
  • Laboratoire de Mécanique des Fluides de Lille Kampé de Fériet (LMFL) - UMR 9014
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Coupling rare event algorithms with ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Pré-publication ou Document de travail
Link :
https://lilloa.univ-lille.fr/handle/20.500.12210/55879
Title :
Coupling rare event algorithms with data-based learned committor functions using the analogue Markov chain
Author(s) :
Lucente, Dario [Auteur]
Rolland, Joran [Auteur]
Laboratoire de Mécanique des Fluides de Lille - Kampé de Fériet [LMFL]
Herbert, Corentin [Auteur]
Bouchet, Freddy [Auteur]
HAL domain(s) :
Mathématiques [math]/Systèmes dynamiques [math.DS]
Physique [physics]/Physique [physics]/Physique Numérique [physics.comp-ph]
Physique [physics]/Matière Condensée [cond-mat]/Mécanique statistique [cond-mat.stat-mech]
Physique [physics]/Physique [physics]/Analyse de données, Statistiques et Probabilités [physics.data-an]
English abstract : [en]
Rare events play a crucial role in many physics, chemistry, and biology phenomena, when they change the structure of the system, for instance in the case of multistability, or when they have a huge impact. Rare event ...
Show more >
Rare events play a crucial role in many physics, chemistry, and biology phenomena, when they change the structure of the system, for instance in the case of multistability, or when they have a huge impact. Rare event algorithms have been devised to simulate them efficiently, avoiding the computation of long periods of typical fluctuations. We consider here the family of splitting or cloning algorithms, which are versatile and specifically suited for far-from-equilibrium dynamics. To be efficient, these algorithms need to use a smart score function during the selection stage. Committor functions are the optimal score functions. In this work we propose a new approach, based on the analogue Markov chain, for a data-based learning of approximate committor functions. We demonstrate that such learned committor functions are extremely efficient score functions when used with the Adaptive Multilevel Splitting algorithm. We illustrate our approach for a gradient dynamics in a three-well potential, and for the Charney-DeVore model, which is a paradigmatic toy model of multistability for atmospheric dynamics. For these two dynamics, we show that having observed a few transitions is enough to have a very efficient data-based score function for the rare event algorithm. This new approach is promising for use for complex dynamics: the rare events can be simulated with a minimal prior knowledge and the results are much more precise than those obtained with a user-designed score function.Show less >
Language :
Anglais
Collections :
  • Laboratoire de Mécanique des Fluides de Lille Kampé de Fériet (LMFL) - UMR 9014
Source :
Harvested from HAL
Submission date :
2021-10-13T00:01:00Z
Files
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-03366908/document
  • Open access
  • Access the document
Thumbnail
  • http://arxiv.org/pdf/2110.05050
  • Open access
  • Access the document
Université de Lille

Mentions légales
Accessibilité : non conforme
Université de Lille © 2017