Femtosecond Visualization of hcp-Iron ...
Type de document :
Article dans une revue scientifique: Article original
URL permanente :
Titre :
Femtosecond Visualization of hcp-Iron Strength and Plasticity under Shock Compression
Auteur(s) :
Merkel, Sébastien [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Hok, Sovanndara [Auteur]
Stanford EARTH
Bolme, Cynthia [Auteur]
Los Alamos National Laboratory [LANL]
Rittman, Dylan [Auteur]
Stanford EARTH
Ramos, Kyle James [Auteur]
Morrow, Benjamin [Auteur]
Los Alamos National Laboratory [LANL]
Lee, Hae Ja [Auteur]
Nagler, Bob [Auteur]
Galtier, Eric [Auteur]
Granados, Eduardo [Auteur]
Hashim, Akel [Auteur]
Stanford Synchrotron Radiation Lightsource [SSRL SLAC]
Mao, Wendy L [Auteur]
Stanford EARTH
Gleason, Arianna E [Auteur]
Stanford EARTH
Hok, Sovanndara [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Hok, Sovanndara [Auteur]
Stanford EARTH
Bolme, Cynthia [Auteur]
Los Alamos National Laboratory [LANL]
Rittman, Dylan [Auteur]
Stanford EARTH
Ramos, Kyle James [Auteur]
Morrow, Benjamin [Auteur]
Los Alamos National Laboratory [LANL]
Lee, Hae Ja [Auteur]
Nagler, Bob [Auteur]
Galtier, Eric [Auteur]
Granados, Eduardo [Auteur]
Hashim, Akel [Auteur]
Stanford Synchrotron Radiation Lightsource [SSRL SLAC]
Mao, Wendy L [Auteur]
Stanford EARTH
Gleason, Arianna E [Auteur]
Stanford EARTH
Hok, Sovanndara [Auteur]
Titre de la revue :
Physical Review Letters
Nom court de la revue :
Phys. Rev. Lett.
Numéro :
127
Pagination :
205501
Éditeur :
American Physical Society (APS)
Date de publication :
2021-11-09
ISSN :
0031-9007
Discipline(s) HAL :
Chimie/Matériaux
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Physique [physics]/Physique [physics]/Géophysique [physics.geo-ph]
Physique [physics]/Astrophysique [astro-ph]
Planète et Univers [physics]/Astrophysique [astro-ph]
Planète et Univers [physics]/Sciences de la Terre
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Physique [physics]/Physique [physics]/Géophysique [physics.geo-ph]
Physique [physics]/Astrophysique [astro-ph]
Planète et Univers [physics]/Astrophysique [astro-ph]
Planète et Univers [physics]/Sciences de la Terre
Résumé en anglais : [en]
Iron is a key constituent of planets and an important technological material. Here, we combine in situ ultrafast x-ray diffraction with laser-induced shock compression experiments on Fe up to 187(10) GPa and 4070(285) K ...
Lire la suite >Iron is a key constituent of planets and an important technological material. Here, we combine in situ ultrafast x-ray diffraction with laser-induced shock compression experiments on Fe up to 187(10) GPa and 4070(285) K at 10^8 s−1 in strain rate to study the plasticity of hexagonal-close-packed (hcp)-Fe under extreme loading states. {10-12} deformation twinning controls the polycrystalline Fe microstructures and occurs within 1 ns, highlighting the fundamental role of twinning in hcp polycrystals deformation at high strain rates. The measured deviatoric stress initially increases to a significant elastic overshoot before the onset of flow, attributed to a slower defect nucleation and mobility. The initial yield strength of materials deformed at high strain rates is thus several times larger than their longer-term flow strength. These observations illustrate how time-resolved ultrafast studies can reveal distinctive plastic behavior in materials under extreme environments.Lire moins >
Lire la suite >Iron is a key constituent of planets and an important technological material. Here, we combine in situ ultrafast x-ray diffraction with laser-induced shock compression experiments on Fe up to 187(10) GPa and 4070(285) K at 10^8 s−1 in strain rate to study the plasticity of hexagonal-close-packed (hcp)-Fe under extreme loading states. {10-12} deformation twinning controls the polycrystalline Fe microstructures and occurs within 1 ns, highlighting the fundamental role of twinning in hcp polycrystals deformation at high strain rates. The measured deviatoric stress initially increases to a significant elastic overshoot before the onset of flow, attributed to a slower defect nucleation and mobility. The initial yield strength of materials deformed at high strain rates is thus several times larger than their longer-term flow strength. These observations illustrate how time-resolved ultrafast studies can reveal distinctive plastic behavior in materials under extreme environments.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Projet ANR :
Autre(s) projet(s) ou source(s) de financement :
I-SITE ULNE R-ERCGEN-19-006-MERKEL MetalCore
Établissement(s) :
Université de Lille
CNRS
INRA
ENSCL
CNRS
INRA
ENSCL
Collections :
Équipe(s) de recherche :
Matériaux Terrestres et Planétaires
Date de dépôt :
2021-11-10T08:59:57Z
2021-11-15T10:26:30Z
2021-11-15T10:26:30Z
Fichiers
- merkel2021prl.pdf
- Version éditeur
- Accès libre
- Accéder au document