• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Conditions of self-oscillations in generalized ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique
DOI :
10.1109/TAC.2021.3066581
Title :
Conditions of self-oscillations in generalized Persidskii systems
Author(s) :
Wang, Jian [Auteur]
Hangzhou Dianzi University [HDU]
Mendoza Avila, Jésus [Auteur]
Universidad Nacional Autónoma de México = National Autonomous University of Mexico [UNAM]
Efimov, Denis [Auteur] refId
Finite-time control and estimation for distributed systems [VALSE]
Aleksandrov, Alexander Yu [Auteur]
Saint Petersburg State University [SPBU]
Fridman, Leonid [Auteur]
Universidad Nacional Autónoma de México = National Autonomous University of Mexico [UNAM]
Journal title :
IEEE Transactions on Automatic Control
Publisher :
Institute of Electrical and Electronics Engineers
Publication date :
2021-03-17
ISSN :
0018-9286
HAL domain(s) :
Sciences de l'ingénieur [physics]/Automatique / Robotique
English abstract : [en]
For a class of generalized Persidskii systems, whose dynamics are described by superposition of a linear part with multiple sector nonlinearities and exogenous perturbations, the conditions of practical stability, instability ...
Show more >
For a class of generalized Persidskii systems, whose dynamics are described by superposition of a linear part with multiple sector nonlinearities and exogenous perturbations, the conditions of practical stability, instability and oscillatory behavior in the sense of Yakubovich are established. For this purpose the conditions of local instability at the origin and global boundedness of solutions (practical input-to-state stability) are developed in the form of linear matrix inequalities. The proposed theory is applied to investigate robustness to unmodeled dynamics of nonlinear feedback controls in linear systems, and to determine the presence of oscillations in the models of neurons.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.inria.fr/hal-03168417/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-03168417/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-03168417/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017