• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Puiseux Series and Algebraic Solutions of ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Autre communication scientifique (congrès sans actes - poster - séminaire...): Communication dans un congrès avec actes
Title :
Puiseux Series and Algebraic Solutions of First Order Autonomous AODEs -- A MAPLE Package
Author(s) :
Boulier, Francois [Auteur] refId
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Cano, Jose [Auteur]
Universidad de Valladolid [Valladolid] [UVa]
Falkensteiner, Sebastian [Auteur]
Research Institute for Symbolic Computation [RISC]
Sendra, Rafael [Auteur]
Universidad de Alcalá - University of Alcalá [UAH]
Conference title :
Proceedings of the Maple Conference 2020
City :
Waterloo
Country :
Canada
Start date of the conference :
2020-11-02
Publication date :
2021
HAL domain(s) :
Informatique [cs]/Calcul formel [cs.SC]
English abstract : [en]
There exist several methods for computing exact solutions of algebraic differential equations. Most of the methods, however, do not ensure existence and uniqueness of the solutions and might fail after several steps, or ...
Show more >
There exist several methods for computing exact solutions of algebraic differential equations. Most of the methods, however, do not ensure existence and uniqueness of the solutions and might fail after several steps, or are restricted to linear equations. The authors have presented in previous works a method to overcome this problem for autonomous first order algebraic ordinary differential equations and formal Puiseux series solutions and algebraic solutions. In the first case, all solutions can uniquely be represented by a sufficiently large truncation and in the latter case by its minimal polynomial. The main contribution of this paper is the implementation, in a MAPLE-package named FirstOrderSolve, of the algorithmic ideas presented therein. More precisely, all formal Puiseux series and algebraic solutions, including the generic and singular solutions, are computed and described uniquely. The computation strategy is to reduce the given differential equation to a simpler one by using local parametrizations and the already known degree bounds.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
Méthodes symboliques pour les réseaux biologiques
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • http://arxiv.org/pdf/2103.03646
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017