• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Symbolic-Numeric Validation Algorithm ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique
Title :
A Symbolic-Numeric Validation Algorithm for Linear ODEs with Newton-Picard Method
Author(s) :
Bréhard, Florent [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Journal title :
Mathematics in Computer Science
Publisher :
Springer
Publication date :
2021
ISSN :
1661-8270
English keyword(s) :
validated numerics
a posteriori validation
Chebyshev spectral methods
linear differential equations
D-finite functions
HAL domain(s) :
Informatique [cs]/Calcul formel [cs.SC]
Informatique [cs]/Analyse numérique [cs.NA]
English abstract : [en]
A symbolic-numeric validation algorithm is developed to compute rigorous and tight uniform error bounds for polynomial approximate solutions to linear ordinary differential equations, and in particular D-finite functions. ...
Show more >
A symbolic-numeric validation algorithm is developed to compute rigorous and tight uniform error bounds for polynomial approximate solutions to linear ordinary differential equations, and in particular D-finite functions. It relies on an a posteriori validation scheme, where such an error bound is computed afterwards, independently from how the approximation was built. Contrary to Newton-Galerkin validation methods, widely used in the mathematical community of computer-assisted proofs, our algorithm does not rely on finite-dimensional truncations of differential or integral operators, but on an efficient approximation of the resolvent kernel using a Chebyshev spectral method. The result is a much better complexity of the validation process, carefully investigated throughout this article. Indeed, the approximation degree for the resolvent kernel depends linearly on the magnitude of the input equation, while the truncation order used in Newton-Galerkin may be exponential in the same quantity. Numerical experiments based on an implementation in C corroborate this complexity advantage over other a posteriori validation methods, including Newton-Galerkin.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-03161118/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-03161118/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-03161118/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017